DOI QR코드

DOI QR Code

Cardiac Differentiation of Chicken Spermatogonial Stem Cells-A Directional Approach

  • Sodhi, Simrinder Singh (Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University) ;
  • Jeong, Dong Kee (Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University)
  • 투고 : 2014.12.01
  • 심사 : 2014.12.19
  • 발행 : 2014.12.31

초록

A tremendous increase in the human population has put poultry industry under an increased pressure to meet steep increase in the demand. Poultry is contributing 25% of the total world's meat production and lesser cost of investment per bird makes it more suitable for the further breeding programmes. Major poultry diseases frequently lead to cardiac damage and cause huge economic losses to poultry industry due to mortality. The in vitro embryonic stem cell (ESC) technology has a futuristic approach for homogeneous populace of differentiated cells, for their further transplantations. During in vitro conditions the differentiated cell populace can be used in grafting and transplantation processes to regenerate damaged tissues. Therefore, the current study targeted the use of spermatogonial stem cells (SSCs) in the poultry production system through cardiac regeneration. The current study will also open new boulevard for the similar kind of research in other livestock species for the management of heart diseases.

키워드

참고문헌

  1. Best P (2011): Status of global poultry meat, egg production sectors. Available from http://www.WATTAgNet.com, updated Nov 24, 2011(Accessed on November 20, 2014).
  2. Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM (2002): Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 91:189-201. https://doi.org/10.1161/01.RES.0000027865.61704.32
  3. Bradley A, Evans M, Kaufman MH, Robertson E (1984): Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255-256. https://doi.org/10.1038/309255a0
  4. Brulet P, Babinet C, Kemler R, Jacob F (1980): Monoclonal antibodies against trophectoderm-specific markers during mouse blastocyst formation. Proc Natl Acad Sci USA 77:4113-4117. https://doi.org/10.1073/pnas.77.7.4113
  5. Chowdhury VS, Sultana H, Furuse M (2014): Inter national perspectiveson impacts of reproductive technologies for world food production in Asia associated with poultry production. Adv Exp Med Biol 752:229-237. https://doi.org/10.1007/978-1-4614-8887-3_12
  6. Conrad S, Renninger M, Hennenlotter J, Wiesner T, Just L, Bonin M et al. (2008): Generation of pluripotent stem cells from adult human testis. Nature 456:344-349. https://doi.org/10.1038/nature07404
  7. Crespo R, Garner MM, Hopkins SG, Shah DH (2013): Outbreak of Listeria monocyte genes in an urban poultry flock. BMC Vet Res 9:204-208. https://doi.org/10.1186/1746-6148-9-204
  8. Draper JS, Pigott C, Thomson JA, Andrews PW (2002): Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200:249-258. https://doi.org/10.1046/j.1469-7580.2002.00030.x
  9. Eistetter HR (1989): Pluripotent embryonal stem cell lines can be established from disaggregated mouse morulae. Dev Growth Differ 31:275-282. https://doi.org/10.1111/j.1440-169X.1989.00275.x
  10. FAO (2013): FAO Statistical yearbook 2012, Food and Agriculture Organization of United Nations, Rome.
  11. Gardner RL, Brook FA (1997): Reflections on the biology of embryonic stem (ES) cells. Int J Dev Biol 41:235-243.
  12. Golestaneh N, Kokkinaki M, Pant D, Jiang J, De-Stefano D, Fernandez-Bueno C et al. (2009): Pluripotent stem cells derived from adult human testes. Stem Cells Dev 18:1115-1126. https://doi.org/10.1089/scd.2008.0347
  13. Guan K, Furst DO, Wobus AM (1999a): Modulation of sarcomere organization during embryonic stem cellderived cardiomyocyte differentiation. Eur J Cell Biol 78:813-823. https://doi.org/10.1016/S0171-9335(99)80032-6
  14. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH et al. (2006): Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199-1203. https://doi.org/10.1038/nature04697
  15. Guan K, Rohwedel J, Wobus AM (1999b): Embryonic stem cell differentiation models: cardiogenesis, myogenesis, neurogenesis, epithelial and vascular smooth muscle cell differentiation in vitro. Cytotechnology 30: 211-226. https://doi.org/10.1023/A:1008041420166
  16. Guan K, Wagner S, Unsold B, Maier LS, Kaiser D, Hemmerlein B et al. (2007): Generation of functional cardiomyocytes from adult mouse spermatogonial stem cells. Circ Res 100:1615-1625. https://doi.org/10.1161/01.RES.0000269182.22798.d9
  17. He Z, Kokkinaki M, Jiang J, Dobrinski I, Dym M (2010): Isolation, characterization and culture of human spermatogonia. Biol Reprod 82:363-372. https://doi.org/10.1095/biolreprod.109.078550
  18. Hescheler J, Fleischmann BK, Lentini S, Maltsev VA, Rohwedel J, Wobus AM et al. (1997): Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Cardiovasc Res 36:149-162. https://doi.org/10.1016/S0008-6363(97)00193-4
  19. Jasmin, Spray DC, de Carvalho ACC and Otero R M (2010): Chemical induction of cardiac differentiation in P19 embryonal carcinoma stem cells. Stem Cells Dev 19(3): 403-411. https://doi.org/10.1089/scd.2009.0234
  20. Johkura K, Li C, Asanuma K, Okouchi Y, Ogiwara N and Sasaki K (2004): Cytochemical and ultra- structural characterization of growing colonies of human embryonic stem cells. J Anat 205:247-255. https://doi.org/10.1111/j.0021-8782.2004.00336.x
  21. Jordana BJ, Vogelb S, Starkb MR, Becksteada RB (2014) Expression of green fluorescent protein in the chicken using in vivo transfection of the piggy-Bac transposon. J Biotechnol 173:86-89. https://doi.org/10.1016/j.jbiotec.2014.01.016
  22. Jung JG, Kim DK, Park TS, Lee SD, Lim JM, Han JY (2005): Development of novel markers for the characterization of chicken primordial germ cells. Stem Cells 23:689-698. https://doi.org/10.1634/stemcells.2004-0208
  23. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H et al. (2004): Generation of pluripotent stem cells from neonatal mouse testis. Cell 119:1001-1012. https://doi.org/10.1016/j.cell.2004.11.011
  24. Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S et al. (2003): Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 69:612-616. https://doi.org/10.1095/biolreprod.103.017012
  25. Kim YY, Ku SY, Jang J, Oh SK, Kim HS, Kim SH et al. (2008): Use of long-term cultured embryoid bodies may enhance cardiomyocyte differentiation by BMP2. Yonsei Med J 49(5):819-827. https://doi.org/10.3349/ymj.2008.49.5.819
  26. Kossack N, Meneses J, Shefi S, Nguyen HN, Chavez S, Nicholas C et al. (2009): Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells 27:138-149. https://doi.org/10.1634/stemcells.2008-0439
  27. Lee DH, Jang JH, Kim BY, Kwon YK, Gomis S, Lee JB et al. (2014): Diagnosis of Leucocytozoon caulleryi infection in commercial broiler breeders in South Korea. Avian Dis. 58:183-186. https://doi.org/10.1637/10621-072913-Case.1
  28. Luan NT, Sharma N, Kim SW, Ha Pham TH, Hong YH, Oh SJ et al. (2014): Characterization and cardiac differentiation of chicken spermatogonial stem cells. Animal Reproduction Science 151:244-255. https://doi.org/10.1016/j.anireprosci.2014.10.010
  29. Menard C, Hagege AA, Agbulut O et al. (2005): Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet 366:1005-1012. https://doi.org/10.1016/S0140-6736(05)67380-1
  30. Neubert E, Huppke S, Grundel G (1999): Determination of beta-adrenergic binding sites in the myocardium of young female chickens of various strains-a study for the clarification of frequent occurrence of sudden death and ascites in male broilers. Berl Munch Tierarztl Wochenschr 112:180-185.
  31. Oatley JM, Brinster RL (2012): The germline stem cell niche unit in mammalian testes. Physiol Rev 92:577-595. https://doi.org/10.1152/physrev.00025.2011
  32. Olkowski AA, Wojnarowicz C, Nain S, Ling B, Al corn JM, Laarveld B, (2008): A study on pathogenesis of sudden death syndrome in broiler chickens. Res Vet Sci 85:131-140. https://doi.org/10.1016/j.rvsc.2007.08.006
  33. Pain B, Clark ME, Shen M, Nakazawa H, Sakurai M, Samarut J et al. (1996): Long-term in vitro culture and characterization of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122:2339-2348.
  34. Passier R, van Laake LW, Mummery CL (2008): Stem-cell-based therapy and lessons from the heart. Nature 453:322-329. https://doi.org/10.1038/nature07040
  35. Sodhi SS, Jeong DK, Sharma N, Le JH, Kim JH, Kim SH et al. (2013): Marker assisted selection- applications and evaluation for commercial poultry breeding. Korean J Poult Sci 40:223-234. https://doi.org/10.5536/KJPS.2013.40.3.223
  36. Solter D, Knowles BB (1978): Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci USA 75:5565-5569. https://doi.org/10.1073/pnas.75.11.5565
  37. Sonaiya EB, Swan SEJ (2004): FAO animal production and health manual: Small scale poultry production-A technical guide. Available online (accessed on 20 September 2014) http://www.fao.org/ 3/a-y5169e.pdf.
  38. Spradling A, Drummond-Barbosa D, Kai T (2001): Stem cells find their niche. Nature 414:98-104. https://doi.org/10.1038/35102160
  39. Stewart CL, Gadi I, Bhatt H (1994): Stem cells from primordial germ cells can reenter the germ line. Dev Biol 161:626-628. https://doi.org/10.1006/dbio.1994.1058
  40. Taha FA (2003): Patterns of world poultry consumption and production. In: The Poultry Sector in Middle-Income Countries and Its Feed Requirements, The Case of Egypt, E.R.S., Washington, DC, USA, Agriculture and Trade Report No. WRS03-02, 3-14.
  41. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al. (1998): Embryonic stem cell lines derived from human blastocysts. Science 282:1145. https://doi.org/10.1126/science.282.5391.1145
  42. Wang YX, Chen GA, Song TR, Mao GH, Bai HY (2010): Enhancement of cardiomyocyte differentiation from human embryonic stem cells. Sci China Life Sci 53:581-589.
  43. Wobus AM, Guan K (1998): Embryonic stem cellderived cardiac differentiation: Modulation of differentiation and 'loss of function' analysis in vitro. Trends Cardiovasc Med 8:64-74. https://doi.org/10.1016/S1050-1738(97)00129-1
  44. Wobus AM, Holzhausen H, Jakel P, Schoneich J (1984): Characterization of a pluripotent stem cell line derived from a mouse embryo. Exp Cell Res 152:212-219. https://doi.org/10.1016/0014-4827(84)90246-5
  45. Wobus AM, Wallukat G, Hescheler J (1991): Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2C channel blockers. Differentiation 48:173-182. https://doi.org/10.1111/j.1432-0436.1991.tb00255.x
  46. Xu C, Police S, Rao N, Carpenter MK (2002): Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91:501-508. https://doi.org/10.1161/01.RES.0000035254.80718.91