DOI QR코드

DOI QR Code

Micro-structural Evolutions of Polyimide Composite Films with Graphenes

그라핀을 포함하는 폴리이미드 멤브레인의 미세조직구조 변화

  • Shim, Seong Eun (Department of Materials & Components Engineering, Dong-Eui University) ;
  • Kim, Jungsoo (Dongnam Regional Division, Korea Institute of Industrial Technology) ;
  • Nam, Dae-Geun (Dongnam Regional Division, Korea Institute of Industrial Technology) ;
  • Oh, Weontea (Department of Materials & Components Engineering, Dong-Eui University)
  • 심성은 (동의대학교 융합부품공학과) ;
  • 김정수 (한국생산기술연구원 동남권지역본부) ;
  • 남대근 (한국생산기술연구원 동남권지역본부) ;
  • 오원태 (동의대학교 융합부품공학과)
  • Received : 2013.10.30
  • Accepted : 2013.12.10
  • Published : 2014.01.01

Abstract

The polyimide composite membranes were prepared with polyimide composite solutions including graphenes by using the phase inversion method. The morphologies of these membranes were significantly changed according to the graphene loadings in composite solutions and the solvent systems of the composite solutions. The finger-like macro-voids were formed in the hollow fiber membranes which were prepared in the NMP solvent system with a small amount of ethanol. As increasing the content of the viscous alcohols such as glycerol or 1,3-propanediol in the composite solution, however, the morphologies of the hollow fiber membranes were changed to sponge-like types. In case of flat membranes, the increase of graphene content in polyimide composites causes that their membranes change from the finger-like macro-porous to sponge-like morphologies.

Keywords

References

  1. E. C. Gregor, G. B. Tanny, E. Shchori, and Y. Kenigsberg, J. Ind. Text., 18, 26 (1998).
  2. V. D. Alves, B. Koroknai, K. Belafi-Bako, and I. M. Coelhoso, Desalination, 162, 263 (2003).
  3. R. W. Spillman, Membrane Separation Technology, Principles and Applications (Elsevier, Amsterdam, 1995)
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, and D Jiang, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  5. S. Y. Choi, ETRI, 26 (2011).
  6. W. S. Hummers Jr. and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  7. "Development of Polymeric Membranes for Gas Separation", Korea Ints. Science and Technology (1998).
  8. S. M Woo, J. J. Choi, and S. Y. Nam, J. Membrane, 22, 128 (2012).
  9. H. C. Koh, S. Y. Ha, and S. Y. Nam, J. Membrane, 21, 98(2011).
  10. S. H. Chen, R. M. Liou, J. Y. Lai, and C. L. Lai, J. European Polymer, 43, 2997 (2007).
  11. H. Yanagishita, D. Kitamoto, K. Haraya, T. Nakane, T. Okada, H. Matsuda, Y. Idemoto, N. Koura, J. Membr. Sci., 188, 165 (2001). https://doi.org/10.1016/S0376-7388(01)00337-4
  12. S. S. Madaeni, A. Farhadian, and V. Vatanpour, J. Advances in Polymer Technology, 31, 298 (2012). https://doi.org/10.1002/adv.20253
  13. "Preparation of Polyimide Hollow Fiber Membrane for Gas Seperation", Dongguk University (1997).
  14. E. P. Favvas, G. C. Kapantaidakis, J. W. Nolan, A. Ch. Mitropoulos, and N. K. Kanellopoulos, J. Materials Processing Tech., 186, 102 (2007). https://doi.org/10.1016/j.jmatprotec.2006.12.024
  15. K. Hendrix, K. Vanherck, and I. F. J. Vankelecom, J. Membr. Sci. (2012)
  16. J. C.Jansen, M. Macchione, and E. Drioli J. Membr. Sci., 255, 167 (2005). https://doi.org/10.1016/j.memsci.2005.01.032
  17. S. Li, V. A. Tuan, J. L. Falconer, and R. D. Noble, J. Membr. Sci., 191, 53 (2001). https://doi.org/10.1016/S0376-7388(01)00448-3