DOI QR코드

DOI QR Code

Evaluation of the Performance of Transit Assignment Algorithms for Urban Rail Networks

도시철도 교통량 배정 알고리즘의 적합성 평가

  • Jung, Dongjae (Department of Environmental Planning, Seoul National University) ;
  • Chang, Justin S. (Department of Environmental Planning, Seoul National University)
  • Received : 2014.09.12
  • Accepted : 2014.11.06
  • Published : 2014.12.31

Abstract

This paper evaluates the performance of transit assignment algorithms for urban rail networks. The accuracy of the algorithms is essential not just for travel forecasting but also for the area of applications such as the assessment of road vulnerability and the fare adjustments between train operating companies. Nonetheless, the suitability and caveats for the series of computational steps have not yet been much discussed. This study thus considers the characteristics that are appropriate for investigating Seoul rail travelers using three representative transit assignment algorithms: the optimal strategy algorithm, route choice algorithms, and the Dial's algorithm. Both the theoretical foundation and the empirical performance are examined. The results demonstrate that the Dial's algorithm is superior in terms of the theoretical soundness and the computational efficiency.

이 연구는 도시철도 교통량 배정 알고리즘의 적합성 평가를 목적으로 수행되었다. 이 알고리즘의 정확도는 교통수요 예측뿐만 아니라 네트워크의 취약성 분석이나 철도 운영기관간 운임수입 정산 등의 응용분야에서도 중요한 요소이다. 그럼에도 불구하고 알고리즘의 적합성이나 발전방향에 대한 논의는 부족하였다. 이에 본 연구는 대표적 교통량 배정 알고리즘인 최적전략 알고리즘, 경로선택 알고리즘, Dial 알고리즘을 대상으로 수도권 도시철도 이용자의 통행행태 연구에 적합한 알고리즘의 특성에 대하여 논의하였다. 이를 위해 각 알고리즘의 이론적 가정을 검토하고, 수도권 도시철도 네트워크에 적용해 그 성능을 살펴보았다. 그 결과 Dial 알고리즘이 이론적 가정의 합리성과 분석단위에 따른 계산적 효율성 측면에서 도시철도 이용자의 통행행태 분석에 우수한 것으로 나타났다.

Keywords

References

  1. Y. Liu, J. Bunker, L. Ferreira (2010) Transit users' route-choice modelling in transit assignment: a review, Transport Reviews, 30(6), pp. 753-769. https://doi.org/10.1080/01441641003744261
  2. H. Kato, Y. Kaneko, M. Inoue (2010) Comparative analysis of transit assignment: evidence from urban railway system in the Tokyo Metropolitan Area, Transportation, 37, pp. 775-799. https://doi.org/10.1007/s11116-010-9295-8
  3. H. Spiess, M. Florian (1989) Optimal strategies: a new assignment model for transit networks, Transportation Research, 23B, pp. 83-102.
  4. S. Raveau, J.C. Munoz, L. de Grange (2011) A topological route choice model for metro, Transportation Research, 45A, pp. 138-147.
  5. J.Y. Yen (1971) Finding the k shortest loopless paths in a network, Management Science, 17(11), pp. 712-716. https://doi.org/10.1287/mnsc.17.11.712
  6. J.A. Azevedo, M.E.O.S. Costa, J.J.E.R.S. Madeira, E.Q.V. Martins (1993) An algorithm for the ranking of shortest paths, European Journal of Operational Research, 69, pp. 97-106. https://doi.org/10.1016/0377-2217(93)90095-5
  7. D. Eppstein (1999) Finding the k shortest paths, SIAM Journal on. Computing, 28(2), pp. 652-673.
  8. S.I. Shin, H.S. Noh, C.S. Cho (2005) A revenue allocation model for the integrated urban rail system in the Seoul metropolitan, Journal of Korean Society of Transportation, 23(5), pp. 157-167.
  9. S.I. Sin, C.J. Lee, C.S. Kim (2010) Allocating revenues to metropolitan railroad operators using public transportation card data, Journal of Korean Society of Transportation, 28(2), pp. 7-19.
  10. S.H. Cheon (2010) Development of a smart card data-based stochastic transit assignment model on integrated public transportation networks, Ph D. Thesis, Seoul National University.
  11. S. Bekhor, T. Toledo, J.N. Prashker (2008) Effects of choice set size and route choice models on path-based traffic assignment, Transportmetrica, 4(2), pp. 117-133. https://doi.org/10.1080/18128600808685682
  12. R.B. Dial (1971) A probabilistic multipath traffic assignment model which obviates path enumeration, Transportation Research, 5, pp. 83-111. https://doi.org/10.1016/0041-1647(71)90012-8
  13. Y. Sheffi (1985) Urban transportation networks: Equilibrium Analysis with Mathematical Programming Methods, Prentice-Hall, New York, pp. 286-308.
  14. P. Robillard (1974) Calibration of $Dial^{\circ}Os$ assignment method, Transportation Science, 8, pp. 117-125. https://doi.org/10.1287/trsc.8.2.117
  15. D. Van Vliet (1981) Selected node-pair analysis in $Dial^{\circ}Os$ assignment algorithm, Transportation Research, 15B, pp. 66-68.
  16. http://www.molit.go.kr/USR/NEWS/m_71/dtl.jsp?id=155704805 (accessed Dec. 23, 2014).
  17. S.I. Shin (2007) Integrated transit service evaluation methodologies using transportation card data, Seoul Development Institute, Seoul.
  18. S.H. Son, G.J. Choe, J.H. Yu (2007) An estimation of generalized cost for transit assignment, Journal of Korean Society of Transportation, 25(2), pp. 121-132.
  19. C.H. Yang, E.Y. Son (2000) Estimation of transfer related values of Seoul subway users using stated preference and revealed preference analyses, Journal of Korean Society of Transportation, 18(4), pp. 19-30.
  20. Seoul Metropolitan Rapid Transit Corp. (2009) 2009 Transportation Plan.
  21. Seoul Metropolitan Rapid Transit Corp. (2010) 2010 Transportation Plan.
  22. Seoul Metropolitan Rapid Transit Corp. (2011) 2011 Transportation Plan.
  23. Korea Development Institute (2008) A Study on Standard Guidelines for Pre-feasibility Study on Road and Railway Projects, 5th ed., Seoul.
  24. M. Parveen, A. Shalaby, M. Wahba (2007) G-EMME/2: Automatic Calibration Tool of EMME/2 Transit Assignment Using Genetic Algorithms, Journal of Transportation Engineering, 133(10), pp. 549-555. https://doi.org/10.1061/(ASCE)0733-947X(2007)133:10(549)
  25. K.J. Lee (2004) Estimating transfer penalties considering transfer movement, Master thesis, Seoul National University.
  26. D. Jeong (2012) A link-based stochastic algorithm for transit assignment: results from the urban railway system in Seoul, Master thesis, Seoul National University.