DOI QR코드

DOI QR Code

Comparison of Acidic pH and Temperature Stabilities between Two Bacillus Mannanases Produced from Recombinant Escherichia coli

재조합 대장균으로부터 생산된 Bacillus 속 균주 유래 Mannanases의 내산성과 열안정성 비교

  • Jeon, Ho Jin (Department of Food Science and Biotechnology, Woosong University) ;
  • Yoon, Ki-Hong (Department of Food Science and Biotechnology, Woosong University)
  • 전호진 (우송대학교 바이오식품과학전공) ;
  • 윤기홍 (우송대학교 바이오식품과학전공)
  • Received : 2014.09.03
  • Accepted : 2014.09.29
  • Published : 2014.12.31

Abstract

Two genes encoding the mannanase of Bacillus sp. YB-1401 and B. amyloliquefaciens YB-1402, which had been isolated at acidic pH as mannanase producers, were each cloned into Escherichia coli, and sequenced. Both mannanase genes consisted of 1,080 nucleotides, encoding polypeptides of 360 amino acid residues. The deduced amino acid sequences of the two mannanase genes differed by four amino acid residues different, and were highly homologous to those of mannanases belonging to the glycosyl hydrolase family 26. Comparison of two mannanases produced from recombinant E. coli indicated that His-tagged mannanase of YB-1402 (HtMAN1402) was more stable than that of YB-1401 at acidic pH and high temperature. In particular, HtMAN1402 retained more than 50% of its activity at pH 3.0 after 4 h of pre-incubation, suggesting the enzyme is a valuable candidate for use as a feed additive. In addition, thermostability of the two mannanases was found to be enhanced by $Ca^{2+}$ ions.

산성 배지에서 성장하며 mannanase를 생산하는 균으로 분리된 Bacillus sp. YB-1401과 B. amyloliquefaciens YB-1402로부터 mannanase 유전자를 각각 클로닝하고 그 염기서열을 분석한 결과 2개 유전자는 동일하게 360 아미노산으로 구성된 단백질을 코드하며 1,080 뉴클레오티드로 구성되어 있다. 아미노산 잔기 배열의 유사성을 분석한 결과 이들 mannanases는 서로 4개의 잔기가 다르며 glycosyl hydrolase family 26에 속하는 mannanase와 상동성이 높았다. 재조합 대장균이 생산하는 YB-1402 유래의 His-tagged mannanase (HtMAN1402)가 YB-1401 유래의 His-tagged mannanase (HtMAN1401)에 비해 열안정성과 산성 pH에서 안정성이 높았다. 특히 HtMAN1402는 pH 3.0에서 4시간 방치 후에도 약 50% 이상의 잔존활성을 보여 사료첨가용 효소로 사용되기에 적합한 특성을 보였다. 또한 이들 효소는 $Ca^{2+}$ 이온에 의해 열안정성이 증가하는 것으로 확인되었다.

Keywords

References

  1. Chauhan, P.S., Sharma, P., Puri, N., and Gupta, N. 2014. A process for reduction in viscosity of coffee extract by enzymatic hydrolysis of mannan. Bioprocess Biosyst. Eng. 37, 1459-1467. https://doi.org/10.1007/s00449-013-1118-9
  2. Dhawan, S. and Kaur, J. 2007. Microbial mannanases: an overview of production and applications. Crit. Res. Biotechnol. 27, 197-216. https://doi.org/10.1080/07388550701775919
  3. Ghosh, A., Luis, A.S., Bras, J.L., Fontes, C.M., and Goyal, A. 2013. Thermostable recombinant $\beta$-(1$\rightarrow$4)-mannanase from C. thermocellum: biochemical characterization and manno-oligosaccharides production. J. Agric. Food Chem. 61, 12333-12344. https://doi.org/10.1021/jf403111g
  4. Hatada, Y., Takeda, N., Hirasawa, K., Ohta Y., Usami, R., Yoshida, Y., Grant, W.D., Ito, S., and Horikoshi, K. 2005. Sequence of the gene for a high-alkaline mannanase from an alkaliphilic Bacillus sp. strain JAMB-750, its expression in Bacillus subtilis and characterization of the recombinant enzyme. Extremophiles 9, 497-500. https://doi.org/10.1007/s00792-005-0460-5
  5. Huang, J.L., Bao, L.X., Zou, H.Y., Che, S.G., and Wang, G.X. 2012. High-level production of a cold-active B-mannanase from Bacillus subtilis BS5 and its molecular cloning and expression. Mol. Gen. Mikrobiol. Virusol. 4, 14-17.
  6. Jeon, H.J. and Yoon, K.H. 2014. Production and characterization of mannanase from a Bacillus sp. YB-1401 isolated from fermented soybean paste. Kor. J. Microbiol. Biotechnol. 42, 99-105. https://doi.org/10.4014/kjmb.1403.03007
  7. Jiang, Z., Wei, Y., Li, D., Li, L., Chai, P., and Kusakabe, I. 2006. High-level production, purification and characterization of a thermostable $\beta$-mannanase from the newly isolated Bacillus subtilis WY34. Carbohydr. Polym. 66, 68-96.
  8. Kim, J.S., Ingale, S.L., Lee, S.H., Kim, K.H., Kim, J.S., Lee, J.H., and Chae, B.J. 2013. Effects of energy levels of diet and $\beta$-mannanase supplementation on growth performance, apparent total tract digestibility and blood metabolites in growing pigs. Anim. Feed Sci. Technol. 186, 64-70. https://doi.org/10.1016/j.anifeedsci.2013.08.008
  9. Kumagai, Y., Usuki, H., Yamamoto, Y., Yamasato, A., Arima, J., Mukaihara, T., and Hatanaka, T. 2011. Characterization of calcium ion sensitive region for $\beta$-mannanase from Streptomyces thermolilacinus. Biochim. Biophys. Acta. 1814, 1127-1133. https://doi.org/10.1016/j.bbapap.2011.04.017
  10. Kweun, M.A, Lee, M.S., Choi, J.H., Cho, K.H., and Yoon, K.H. 2004a. Cloning of a Bacillus subtilis WL-7 mannanase gene and characterization of the gene product. J. Microbiol. Biotechnol. 14, 1295-1302.
  11. Kweun, M.A., Shon, J.Y., and Yoon, K.H. 2004b. High-level expression of a Bacillus subtilis mannanase gene in Escherichia coli. Kor. J. Microbiol. Biotechnol. 32, 212-217.
  12. Lu, H., Luo, H., Shi, P., Huang, H., Meng, K., Yang, P., and Yao, B. 2014. A novel thermophilic endo-$\beta$-1,4-mannanase from Aspergillus nidulans XZ3: functional roles of carbohydrate-binding module and Thr/Ser-rich linker region. Appl. Microbiol. Biotechnol. 98, 2155- 2163. https://doi.org/10.1007/s00253-013-5112-6
  13. Lu, H., Zhang, H., Shi, P., Luo, H., Wang, Y., Yang, P., and Yao, B. 2013. A family 5 $\beta$-mannanase from the thermophilic fungus Thielavia arenaria XZ7 with typical thermophilic enzyme features. Appl. Microbiol. Biotechnol. 97, 8121-8128. https://doi.org/10.1007/s00253-012-4656-1
  14. Mendoza, N.S., Arai, M., Sugimoto, K., Ueda, M., Kawaguchi, T., and Joson, L.M. 1995. Cloning and sequencing of $\beta$-mannanase gene from Bacillus subtilis NM-39. Biochim. Biophys. Acta. 1243, 552-554. https://doi.org/10.1016/0304-4165(95)00011-Y
  15. Miller, M.L., Blum, R., Glennon, W.E., and Burton, A.L. 1960. Measurement of carboxymethylcellulase activity. Anal. Biochem. 2, 127-132.
  16. Morreira, L.R. and Filho, E.X. 2008. An overview of mannan structure and mannandegrading enzyme systems. Appl. Microbiol. Biotechnol. 79, 165-178. https://doi.org/10.1007/s00253-008-1423-4
  17. Srivastava, P.K. and Kapoor, M. 2014. Cost-effective endo-mannanase from Bacillus sp. CFR1601 and its application in generation of oligosaccharides from guar gum and as detergent additive. Prep. Biochem. Biotechnol. 44, 39-417.
  18. Summpunn, P., Chaijan, S., Isarangkul, D., Wiyakrutta, S., and Meevootisom, V. 2011. Characterization, gene cloning, and heterologous expression of $\beta$-mannanase from a thermophilic Bacillus subtilis. J. Microbiol. 49, 86-93. https://doi.org/10.1007/s12275-011-0357-1
  19. Sunna, A. 2010. Modular organisation and functional analysis of dissected modular $\beta$-mannanase CsMan26 from Caldicellulosiruptor Rt8B.4. Appl. Microbiol. Biotechnol. 86, 189-200. https://doi.org/10.1007/s00253-009-2242-y
  20. Vijayalaxmi, S., Prakash, P., Jayalakshmi, S.K., Mulimani, V.H., and Sreeramulu, K. 2013. Production of extremely alkaliphilic, halotolerent, detergent, and thermostable mannanase by the free and immobilized cells of Bacillus halodurans PPKS-2. Purification and characterization. Appl. Biochem. Biotechnol. 171, 382-395. https://doi.org/10.1007/s12010-013-0333-9
  21. Xu, M., Zhang, R., Liu, X., Shi, J., Xu, Z., and Rao, Z. 2013. Improving the acidic stability of a $\beta$-mannanase from Bacillus subtilis by site-directed mutagenesis. Process Biochem. 48, 1166-1173. https://doi.org/10.1016/j.procbio.2013.06.014
  22. Yan, X.X., An, X.M., Gui, L.L., and Liang, D.C. 2008. From structure to function: insights into the catalytic substrate specificity and thermostability displayed by Bacillus subtilis mannanase BCman. J. Mol. Biol. 379, 535-544. https://doi.org/10.1016/j.jmb.2008.03.068
  23. Yoon, K.H. 2014. Production and properties of mannanase by a Bacillus amyloliquefaciens isolate. Kor. J. Microbiol. 50, 158-163. https://doi.org/10.7845/kjm.2014.4015
  24. Yoon, K.H. and Lim, B.L. 2007. Cloning and strong expression of a Bacillus subtilis WL-3 mannanase gene in B. subtilis. J. Microbiol. Biotechnol. 17, 1688-1694.
  25. Zhang, C., Chen, J.D., and Yang, F.Q. 2014. Konjac glucomannan, a promising polysaccharide for OCDDS. Carbohydr. Polym. 104, 175 -181. https://doi.org/10.1016/j.carbpol.2013.12.081
  26. Zhang, Y., Ju, J., Peng, H., Gao, F., Zhou, C., Zeng, Y., Xue, Y., Li, Y., Henrissat, B., Gao, G. F., and Ma, Y. 2008. Biochemical and structural characterization of the intracellular mannanase AaManA of Alicyclobacillus acidocaldarius reveals a novel glycoside hydrolase family belonging to clan GH-A. J. Biol. Chem. 283, 31551 -31558. https://doi.org/10.1074/jbc.M803409200
  27. Zhou, H., Yang, Y., Nie, X., Yang, W., and Wu, Y. 2013. Comparison of expression systems for the extracellular production of mannanase Man23 originated from Bacillus subtilis B23. Microb. Cell Fact. 12, 78. https://doi.org/10.1186/1475-2859-12-78

Cited by

  1. 두 종류 Bacillus속 균주의 Xylanases 특성 비교 vol.44, pp.3, 2014, https://doi.org/10.4014/mbl.1608.08002