DOI QR코드

DOI QR Code

백두산 화산에서 수치모형 분석에 의한 화쇄류의 영향 범위

Distribution of Pyroclastic Density Currents Determined by Numerical Model at Mt. Baekdu Volcano

  • 윤성효 (부산대학교 사범대학 지구과학교육과) ;
  • 장철우 (부산대학교 대학원 지구과학과) ;
  • 김선경 (부산대학교 대학원 지구과학과)
  • Yun, Sung-Hyo (Department of Earth Science Education, Pusan National University) ;
  • Chang, Cheolwoo (Department of Earth Science, Pusan National University) ;
  • Kim, Sunkyeong (Department of Earth Science, Pusan National University)
  • 투고 : 2014.11.19
  • 심사 : 2014.12.12
  • 발행 : 2014.12.31

초록

백두산에서 폭발적인 플리니식 분화에 의해 분연주가 형성되고, 이 분연주의 붕괴에 의하여 화쇄류가 발생하는 조건을 가정하였다. 이 가정에 근거하여 Titan2D 모델을 적용하여 모의하였다. 화산분화 시나리오에 근거하여 화쇄류의 영향 범위를 파악하기 위하여 화산폭발지수별로 영향 범위를 산출하였다. 각 화산 시나리오별 결과를 비교하기 위하여, 화구의 위치는 산사면 8곳(8방위)과 칼데라 중심부 1곳 등 9곳을 선정하였다. 화쇄류 흐름의 내부마찰각은 $35^{\circ}$, 층저마찰각은 $16^{\circ}$로 설정하였다. 각 화산폭발지수별 붕괴 분연주의 높이, 화구의 직경, 분연주 붕괴에 의한 초기속도, 붕괴 화산재의 체적에 근거한 수치모의시간 등을 적절하게 가정하였다. 수치모의 결과를 비교하여 보면, 높은 화산폭발지수일수록 분화가 증가하면 화쇄류는 더 멀리 퍼져 나간다. 칼데라 바깥쪽 북동쪽 산사면에 위치한 화구로부터의 화쇄류 발생은 화산폭발지수가 2에서 7로 증가함에 따라 각각 3.3 km, 4.6 km, 13.2 km, 24.0 km, 50.2 km, 83.4 km로 멀어진다. 본 연구 결과가 DB로 구축되면 백두산 인근 지역에서 화쇄류 발생으로 인한 인적, 물적 피해를 최소화하는 것을 목표로 하는 재해예방과 비상 관리 차원에서 매우 중요한 자료로 제공되어 질 것이다.

We assumed the situation where an eruption column had been formed by the explosive Plinian eruption from Mt. Baekdu and that the collapse of eruption column had caused pyroclastic density currents to occur. Based on this assumption, we simulated by using a Titan2D model. To find out about the range of the impacts of pyroclastic density currents by volcanic eruption scenarios, we studied the distance for the range of the impacts by VEIs. To compare the results by each volcanic eruption scenario, we set the location of the vent on the 8-direction flank of the outer rim and on the center of the caldera, the internal friction angle of the pyroclastic density currents as $35^{\circ}$, the bed friction angle as $16^{\circ}$. We set the pile height of column collapse and the vent diameter with various VEIs. We properly assumed the height of the column collapse, the diameter of the vent, the initial rates of the column collapse and the simulation period, based on the VEIs, gravity and the volume of the collapsed volcanic ash. According to the comparative analysis of the simulation results based on the increase of the eruption, the higher VEI by the increase of eruption products, the farther the pyroclastic density currents disperse. To the northwest from the vent on the northeast slope of the outer rim of the caldera, the impact range was 3.3 km, 4.6 km, 13.2 km, 24.0 km, 50.2 km, 83.4 km or more from VEI=2 to VEI=7, respectively. Once the database has been fully constructed, it can be used as a very important material in terms of disaster prevention and emergency management, which aim to minimize human and material damages in the vicinity of Mt. Baekdu when its eruption causes the pyroclastic density currents to occur.

키워드

참고문헌

  1. Auker, M.R., Sparks, R.S.J., Lee Siebert, L., Crosweller, H.S., and Ewert, J., 2013, A statistical analysis of the global historical volcanic fatalities record. Journal of Applied Volcanology, 2:2, 1-24. doi:10.1186/2191-5040-2-2.
  2. Bardintzeff, J.M., 1984, Merapi Volcano (Java, Indonesia) and Merapi-type nuée ardente. Bulletin of Volcanology, 47, 433-446. https://doi.org/10.1007/BF01961217
  3. Branney, M.J. and Kokelaar, B.P., 2002. Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society of London, Memoirs 27, 152p.
  4. Carey, S., Sigurdsson, H. and Sparks, R.S.J., 1988, Experimental studies of particle-laden columns, Journal of Geophysical Research, B93, 1514-1528.
  5. Charbonnier, S.J. and Gertisser, R., 2009, Numerical simulations of block-and-ash flows using the Titan2D flow model: examples from the 2006 eruption of Merapi Volcano, Java, Indonesia. Bulletin of Volcanology 71, 953-959. https://doi.org/10.1007/s00445-009-0299-1
  6. Cui, D.X., Wang, Q.L., Li, K., Wang, W.P., and Hu, Y.X., 2007, Analysis of recent deformation of Changbaishan Tianchi volcano. Chinese Journal of Geophysics, 50, 1515-1524. https://doi.org/10.1002/cjg2.1171
  7. Cole, P.D., Calder, E.S., Druitt, T.H., Hoblitt, R.P., Lejeune, A.M., Robertson, R.E.A., Smith, A.L., Stasiuk, M.V., Sparks, R.S.J., Young, S.R., and MVO staff, 1998, Pyroclastic flows generated by gravitational instability of the 1996-97 lava dome of the Soufriere Hills volcano, Montserrat. Submitted to Geophysical Research Letters, 25, 3425-3428. https://doi.org/10.1029/98GL01510
  8. Cole, P.D., Calder, E.S., Sparks, R.S.J., Clarke, A.B., Druitt, T.H., Young, R.A., Herd, R.A., Harford, C.L., and Norton, G.E., 2002, Deposits from dome-collapse and fountain-collapse pyroclastic flows at Soufriere Hills Volcano, Montserrat. in The Eruption of the Soufriere Hills Volcano, Montserrat From 1995 to 1999, (Eds Druitt T.H., and Kokelaar B.P.), Geological Society, London, Memoirs, 21, 231-262.
  9. Denlinger, R.P. and Iverson, R.M., 2001, Flow of variably fluidized granular material across three-dimensional terrain: 2. Numerical predictions and experimental tests. Journal of Geophysical Research, 106, 553-566. https://doi.org/10.1029/2000JB900330
  10. Doocy, S., Daniels, A., Dooling, S., and Gorokhovich, Y., 2013, The Human Impact of Volcanoes: a Historical Review of Events 1900-2009 and Systematic Literature Review. PLOS Currents Disaster, Edition 1, 1-25.
  11. Fisher, R.V. and Schmincke, H.-U., 1984, Pyroclastic rocks. Springer-Verlag, Berlin, New York, 472p.
  12. Gao, L., 2007, Recent geochemical variation of the hotspring gases from the Tianchi Volcano, Changbai Mountains, Northeast China. Earthquake Research in China, 21, 179-188.
  13. Hoblitt, R.P., 1986, Observations of the Eruption of July 22 and August 7, 1980, at Mount St. Helens, Washington, U.S. Geological Survey Professional Paper 1335, 44p.
  14. Hoblitt, R.P. and C. D. Miller, 1984, "Comments and Reply on 'Mount St. Helens 1980 and Mount Pelee 1902 - Flow or Surge?", Geology, November, 692-693.
  15. Iverson, R.M., 1997, The physics of debris flows. Reviews of Geophysics, 35, 245-296. https://doi.org/10.1029/97RG00426
  16. Iverson, R.M. and Denlinger, R.P., 2001, Flow of variably fluidized granular material across three-dimensional terrain: 1. Coulomb mixture theory. Journal of Geophysical Research, 106, 537-552. https://doi.org/10.1029/2000JB900329
  17. Kim, S,W., Choi, E.K., Jung, S.J., Kim, S.H., Lee, K.H. and Yun, S.H., 2013, A Preliminary Study for Predicting a Damage Range of Pyroclastic Flows, Lahars, and Volcanic Flood caused by Mt. Baekdusan Eruption. Journal of Korean Earth Science Society, 34, 479-491. https://doi.org/10.5467/JKESS.2013.34.6.479
  18. Liu, G., Yang, J.K., Wang, L.J. and Sun, J.C., 2011, Analysis of Tianchi volcano activity in Changbai Mountain, NE China. Global Geology, 14, 44-53.
  19. MacDonald, G.A. 1972. Volcanoes. A discussion of volcanoes, volcanic products, and volcanic phenomena, Prentice-Hall, International, New Jersey, 510p.
  20. Mageney-Castlenau, A., Vilotte, J.P., Bristeau, M.O., Perthame, B., Bouchut, F., Simeoni, C., and Yernemi, S., 2003, Numerical modelling of avalanches based on Saint Venant equations using a kinetic scheme. Journal of Geophysical Research, 108(B11), 2527, doi:10.1029/2002JB 002024.
  21. Malin, M.C. and Sheridan, M.F., 1982, Computer-assisted mapping of pyroclastic surges, Science, 217, 637-640. https://doi.org/10.1126/science.217.4560.637
  22. Miyamoto, T., Nakagawa, M., Tanaka, Y., and Yoshida, M., 2004, Eruptive sequence of the 10th century Baitoushan eruption. In: Tanuguchi, H. (Eds.), 10th great eruption of Baitoushan volcano, northeast China, and its historic effect. CNEAS Monograph Series No.16, 15-43, 218p.
  23. Murcia, H.F., Sheridan, M.F., Macias, J.L., and Cortes, G.P., 2010, TITAN2D simulations of pyroclastic flows at Cerro Machin Volcano, Colombia: Hazard implications, Journal of South American Earth Sciences, 29, 161-170. https://doi.org/10.1016/j.jsames.2009.09.005
  24. Oramas-Dorta, D., Cole, P.D., Wadge, G., Alvarado, G.E., and Soto, G.J, 2012, Pyroclastic flow hazard at Arenal volcano, Costa Rica, Journal of Volcanology and Geothermal Research, 247-248, 74-92. https://doi.org/10.1016/j.jvolgeores.2012.07.015
  25. Pitman, E.B., Patra, A., Bauer, A., Nichita, C., Sheridan, M.F., and Bursik, M., 2003, Computing debris flows. Physics of Fluids 15, 3638-646. https://doi.org/10.1063/1.1614253
  26. Rowley, P.D., Kuntz, M.A., and Macleod, N.S., 1981. Pyroclastic-flow deposits. In: The 1980 eruptions of Mount St. Helens, Washington, edited by P. W Lipman and D. R. Mullineaux. US Geological Survey Professonal Papers 1250, 489-512.
  27. Rupp, B., Bursik, M., Namikawa, L., Webb, A., Patra, A.K., Saucedo, R., Macias, J.L., and Renschler, C., 2006, Computational modeling of the 1991 block and ash flows at Colima Volcano, Mexico. In: Siebe, C., Macias, J.L., Aguirre-Diaz, G.J. (Eds.), Neogene-Quaternary Continental Margin Volcanism: A Perspective from Mexico. Geological Society of America Special Paper 402. Penrose Conference Series, 237-252.
  28. Smithsonian Institution - Global Volcanism Program, 1998, Newhall, C.G. and Punongbayan, R.S. (eds.), Fire and Mud, Eruptions and Lahars of Mount Pinatubo, Philippines: Philippine Institute of Volcanology and Seismology and the University of Washington Press, 1126p.
  29. Shangguan, Z.G. and Sun, M.L., 1997, Mantle-derived raregas releasing features at the Tianchi volcanic area, Changbaishan Mountains. Chinese Science Bulletin, 42(9), 768-771. https://doi.org/10.1007/BF03186974
  30. Savage, S.B. and Hutter, K., 1989, The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics. 199, 177-215. https://doi.org/10.1017/S0022112089000340
  31. Sheridan, M.F., 1979, Emplacement of pyroclastic flows- A review, in C. E. Chapin et al. (eds.), Ash Flow Tuffs, Geological Society of America, Special Paper, 180, 125-136. https://doi.org/10.1130/SPE180-p125
  32. Sheridan, M.F., Stinton, A.J., Patra, A., Pitman, E.B., Bauer, A., and Nichita, C.C., 2005, Evaluating Titan2D massflow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington. Journal of Volcanology and Geothermal Research, 139, 89-02. https://doi.org/10.1016/j.jvolgeores.2004.06.011
  33. Soh, W.J. and Yun, S.H., 1999, A review of the Holocene major eruption of Mt. Paektu volcano. Journal of Korean Earth Science Society, 20, 534-543.
  34. Sparks, R.S.J., Bursik, M.I., Carey, S.N., Gilbert, J.S., Glaze, L.S., Sigurdsson, H., and Woods, A.W., 1997, Volcanic Plumes. John Wiley& Sons, Inc., England, 574p.
  35. Sparks, R.S.J., Francis, P.W., Hamer, R.D., Pankhurst, R.J., O'Callaghan, L.J., Thorpe, R.S., and Page R.N., 1985, Ignimbrites of the Cerro Galan caldera, northwest Argentina. Journal of Volcanology and Geothermal Research. 25, 205-248.
  36. Sulpizio, R., Capra, L., Sarocchi, D., Saucedo, R., Gavilanes-Ruiz, J.C., and Varley, N.R., 2010, Predicting the block-and-ash flow inundation areas at Volcan de Colima (Colima,Mexico) based on the present day (February 2010) status, Journal of Volcanology and Geothermal Research, 193, 49-66. https://doi.org/10.1016/j.jvolgeores.2010.03.007
  37. Taylor, G.A.M., 1958, The 1951 eruption of Mount Lamington, Papua. Australia Bureau of Mineral Resources, Geology & Geophysics, Bulletin 38, 117p.
  38. Torres, R.C., Self, S., and Martinez, M.M.L., 1996, Secondary pyroclastic flows from the June 15, 1991, ignimbrite of Mount Pinatubo, in Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, edited by C. G. Newhall and R.S. Punongbayan, Univ. of Wash. Press, Seattle. 665-678.
  39. Ui, T., Matsuwo, N., Sumita, M., and Fujinawa, A., 1999, Generation of block and ash flows during the 1990-1995 eruption of Unzen Volcano, Japan. Journal of Volcanology and Geothermal Research, 89, 123-137. https://doi.org/10.1016/S0377-0273(98)00128-0
  40. Wu, J.P., Ming, Y.H., Zhang, H.R., Liu, G.M., Fang, L.H., Su, W., and Wang, W.L., 2007, Earthquake swarm activity in Changbaishan Tianchi volcano. Chinese Journal of Geophysics, 50(4), 938-946. https://doi.org/10.1002/cjg2.1111
  41. Xu, J., Liu G., Wu, J., Ming, Y., Wang, Q., Cui, D., Shangguan Z., Pan, B., Lin, X., and Liu, J., 2012, Recent unrest of Changbaishan volcano, northeast China: a precursor of a future eruption? Geophysical Research Letters, 39, L16305, doi:10.1029/2012GL052600.
  42. Xu, J.D., Pan, B., Liu, T.Z., Hajdas, I., Zhao, B., Yu, H.M., Liu, R.X., and Zhao P., 2013, Climatic impact of the Millennium eruption of Changbaishan volcano in China: New insights from high-precision radiocarbon wigglematch dating. Geophysical Research Letters, 40, $1^{\circ}{(R)}$6, doi:10.1029/2012GL054246
  43. Yamamoto, T., Takarada, S., and Suto, S., 1993, Pyroclastic flows from the 1991 eruption of Unzen volcano, Japan. Bulletin of Volcanology, 55, 166-175. https://doi.org/10.1007/BF00301514
  44. Yun, S.H., 2013, Volcanological interpretation of historic eruptions of Mt. Baekdusan volcano. Journal of Korean Earth Science Society, 34, 456-469. https://doi.org/10.5467/JKESS.2013.34.6.456
  45. Yun, S.H. and Cui, Z.X., 1996, Historical eruption records on the Cheonji caldera volcano in the Mt. Paektu. Journal of Korean Earth Science Society, 17, 376-382.
  46. Yun, S.H. and Lee, J.H., 2011, Volcanological interpretation of historic record of 1702 fallout-ash from the Mt. Baegdusan. Journal of Petrological Society of Korea, 20, 243-250. https://doi.org/10.7854/JPSK.2011.20.4.243
  47. Yun, S.H. and Lee, J.H., 2012, Analysis of unrest signs of activity at the Baegdusan volcano. Journal of Petrological Society of Korea, 21, 1-12. https://doi.org/10.7854/JPSK.2012.21.1.001
  48. Yun, S.H., Lee, J.H., and Chang,C.W., 2013, A Study on the change of magma activity from 2002 to 2009 at Mt. Baekdusan using surface displacement. Journal of Korean Earth Science Society, 34, 470-478. https://doi.org/10.5467/JKESS.2013.34.6.470
  49. Yun, S.H., Lee, J.H., Kim, S.K., Chang, C.W., Cho, E., Yang, I.S., Kim, Y.J., Kim, S.H., Lee, K.H., Kim, S.W., and Macedonio, G., 2013, TITAN2D simulations of pyroclastic flows from small scale eruption at Mt. Baekdusan. Journal of Korean Earth Science Society, 34, 615-625. https://doi.org/10.5467/JKESS.2013.34.7.615

피인용 문헌

  1. Comparison of local magnitude scales in South Korea vol.51, pp.4, 2015, https://doi.org/10.14770/jgsk.2015.51.4.415
  2. Classification of GIS-based models according to natural hazard types vol.24, pp.2, 2016, https://doi.org/10.1007/s41324-016-0012-3