DOI QR코드

DOI QR Code

Effect of Zircon on Rare-Earth Element Determination of Granitoids by ICP-MS

ICP-MS를 이용한 화강암내 희토류원소 분석시 저어콘이 미치는 영향

  • Lee, Seung-Gu (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Taehoon (Division of Polar Earth-System Sciences, Korea Polar Research Institute) ;
  • Han, Seunghee (Division of Polar Earth-System Sciences, Korea Polar Research Institute) ;
  • Kim, Hyeon Cheol (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Hyo Min (Geochemical Analysis Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Tanaka, Tsuyoshi (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Seung Ryeol (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Jong Ik (Division of Polar Earth-System Sciences, Korea Polar Research Institute)
  • 이승구 (한국지질자원연구원 국토지질연구본부) ;
  • 김태훈 (극지연구소 극지지구시스템연구부) ;
  • 한승희 (극지연구소 극지지구시스템연구부) ;
  • 김현철 (한국지질자원연구원 국토지질연구본부) ;
  • 이효민 (한국지질자원연구원 지질자원분석센터) ;
  • ;
  • 이승렬 (한국지질자원연구원 국토지질연구본부) ;
  • 이종익 (극지연구소 극지지구시스템연구부)
  • Received : 2014.11.11
  • Accepted : 2014.12.10
  • Published : 2014.12.31

Abstract

We measured rare earth element and Zr concentrations of USGS granite standard material GSP-2 and GSJ granite standard material JG-1a to clarify the effect of zircon during rare earth element analysis using ICP-MS. We also measured rare-earth element and zirconium (Zr) contents of zircon from granite by acid-digestion methods using conventional teflon vial and pressure-bomb. The results show that acid-digestion using teflon vial dissolved ca. 50% of zircon compared to pressure-bomb method. The Zr contents of JG-1a and GSP-2 gave ca 50% of reference value. However, rare-earth element abundance of JG-1a and GSP-2 were similar to those of reference values. This suggests that the decomposition degree of zircon might give a negligible effect on a petrological and geochemical interpretation using chondritenormalized REE pattern.

ICP-MS를 이용한 화강암질 암석내 희토류원소의 함량 분석시 저어콘이 미치는 영향과 저어콘의 산 분해 정도를 미국지질조사소(USGS)의 화강섬록암 표준시료 GSP-2와 일본지질조사소(GSJ) 화강암 표준시료 JG-1a를 이용하여 조사하였다. 아울러 화강암에서 분리된 저어콘 광물에 대해 일반적인 산분해법과 압력용기(bomb)을 이용한 산분해법을 적용하여 지르코늄(Zr)과 희토류원소의 함량을 측정하였다. 실험결과에 의하면, 저어콘은 일반 산분해의 경우 50% 정도가 산분해된 것으로 나타났고, 압력용기를 이용한 경우에는 약 90% 전후가 분해된 것으로 확인되었다. 그리고 GSP-2와 JG-1a의 경우 추천값에 비해 지르코늄의 함량이 50% 정도인 것으로 나타났다. 이는 일반적인 화강암의 산분해의 경우 저어콘의 용해도가 실제로는 50% 정도 밖에 되지 않음을 지시한다. 하지만, 화강암내 희토류원소의 함량의 경우, 저어콘의 분해도와 상관없이, 추천값과 거의 일치하였다. 이는 저어콘의 불완전분해가 암석시료에서의 희토류원소 분포도를 이용한 암석학적 혹은 지구화학적 해석에 큰 영향을 주지는 않는다는 것을 지시해준다.

Keywords

References

  1. Imai, N., Terashima, S., Itoh, S. and Ando, A., 1995, 1994 compilation values for GSJ reference samples, "Igneous rock series". Geochem. J. 29, 91-95. https://doi.org/10.2343/geochemj.29.91
  2. Jenner, G.A., Longerich, H.P., Jackson, S.E and Fryer, B.J., 1990, ICP-MS - A powerful tool for high-precision traceelement analysis in Earth science: evidence from aqnalysis of selected U.S.G.S. reference samples. Chem. Geol. 83, 133-148. https://doi.org/10.1016/0009-2541(90)90145-W
  3. Liang, Q., Jing, H., Gregoire, D. C., 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51, 507-513. https://doi.org/10.1016/S0039-9140(99)00318-5
  4. Longerich, H.P., Jenner, G.A., Fryer, B.J. and Jackson, S.E., 1990, Inductively coupled plasma-mass spectrometric analysis of geochemical samples: a critical evaluation based on case studies. Chem. Geol. 83, 105-118. https://doi.org/10.1016/0009-2541(90)90143-U
  5. Kim, T., Tanaka, T., Lee, S-G., Han, S., Yoo, I-S., Park, SB., Lee, J-I., 2014, Quantitative analysis of REEs in geological samples using ICP-MS: effect of oxide and hydroxide interference on REEs. Proceed. Annual Joint Conf., the Petrol. Soc. Korea and Min. Soc. Korea, 29-30.
  6. Orihashi, Y., Hirata, T., 2003. Rapid quantitative analysis of Y and REE abyndances in XRF glass bead for selected GSJ reference rock standards using Nd-YAG 266 nm UV laser ablation ICP-MS. Geochem. J., 37, 401-412. https://doi.org/10.2343/geochemj.37.401
  7. Park, C-S., Chin, H-S., Oh, H., Moon, J.H., Cheong, C-S., 2011. Low dilution glass bead digestion technique for the trace element analysis of rock samples. J. Petrol. Soc. Korea, 20, 161-172. https://doi.org/10.7854/JPSK.2011.20.3.161
  8. Palache, C. and Ellsworth, H.V., 1928, Zircon from North Burgess, Ontario. Am. Min., 13, 384-389.
  9. Pretorious, W., Weis, D., Williams, G., Hanano, D., Kieffer, B., Scoates, J., 2006. Complete trace elemental Characterisation of granitoid (USGS G-2, GSP-2) reference materials by high resolution inductively plasma-mass spectrometry. Geostand. Geoanal. Res., 30, 39-54. https://doi.org/10.1111/j.1751-908X.2006.tb00910.x
  10. Taylor, S.R. and McLennan, S.M., 1985, The continental crust: Its composition and evolution. Geoscience Texts, Blackwell, Oxford, 312p.
  11. Totland, M., Jarvis, I. and Jarvis, K. E., 1992, An assessment of dissolution techniques for the analysis of geological samples by plasma spectrometry. Chem. Geol., 95, 35-62. https://doi.org/10.1016/0009-2541(92)90042-4
  12. Zhang, W., Hu, Z., Liu, Y., Chen, L., Chen, H., Li, M., Zhao, L., Hu, S., Gao, S., 2012. Reassessment of HF/$HNO_3$, decomposition Capability in the high-pressure digestion of felsic rocks for multi-element determination by ICP-MS. Geostand. Geoanal. Res., 36, 271-289. https://doi.org/10.1111/j.1751-908X.2012.00156.x

Cited by

  1. Evaluation of LA-ICP-MS Whole Rock Trace Element Analysis Using Fused Glass Bead of Silicate Rocks vol.24, pp.2, 2015, https://doi.org/10.7854/JPSK.2015.24.2.141
  2. Effect on the Measurement of Trace Element by Pressure Bomb and Conventional Teflon Vial Methods in the Digestion Technique vol.25, pp.2, 2016, https://doi.org/10.7854/JPSK.2016.25.2.107