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ROBUSTLY SHADOWABLE CHAIN COMPONENTS

OF C
1 VECTOR FIELDS

Keonhee Lee, Le Huy Tien, and Xiao Wen

Abstract. Let γ be a hyperbolic closed orbit of a C1 vector field X on
a compact boundaryless Riemannian manifold M , and let CX(γ) be the
chain component of X which contains γ. We say that CX(γ) is C1 ro-
bustly shadowable if there is a C1 neighborhood U of X such that for any
Y ∈ U , CY (γY ) is shadowable for Yt, where γY denotes the continuation
of γ with respect to Y . In this paper, we prove that any C1 robustly shad-
owable chain component CX(γ) does not contain a hyperbolic singularity,
and it is hyperbolic if CX(γ) has no non-hyperbolic singularity.

1. Introduction

The main goal of the study of differentiable dynamical systems is to un-
derstand the structure of the orbits of diffeomorphisms or vector fields on a
compact Riemannian manifold. To describe the dynamics on the underlying
manifold, it is usual to use the dynamic properties on the tangent bundle such
as hyperbolicity, dominated splitting, partial hyperbolicity, etc.

A fundamental problem in recent years is to study the influence of a robust
dynamic property (i.e., a property that holds for a given system and all C1

nearby systems) on the behavior of the tangent map on the tangent bundle
(for more details, see [2, 4, 5, 7, 13, 17, 22]).

Many of the dynamic results for diffeomorphisms can be extended to the
case of vector fields, but not always. In particular, the results involving the
hyperbolic structure or shadowing property may not be extended to the case of
vector fields. For example, it is well known that if a diffeomorphism f has a C1

neighborhood U(f) such that every periodic point of g ∈ U(f) is hyperbolic,
then the nonwandering set Ω(f) is hyperbolic. However, the result is not true
for the case of vector fields (for more details, see [5]).
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Chain components and homoclinic classes are natural candidates to replace
the Smale’s hyperbolic basic sets in non-hyperbolic theory of dynamical sys-
tems. Many recent papers, most of which are for diffeomorphisms only, have
explored their hyperbolic-like properties such as dominated splitting, partial
hyperbolicity, etc (for more details, see [4, 11, 12, 20, 21, 22]). For instance,
Sakai ([20]) proved that if the chain component Cf (p) of a diffeomorphism f
containing a hyperbolic periodic point p is C1 robustly shadowable and the
Cf (p)-germ of f is expansive, then Cf (p) is hyperbolic. Wen et al. [22] showed
that the assumption of the Cf (p)-germ expansivity of f can be dropped in the
above result to show the hyperbolicity of the C1 robustly shadowable chain
component Cf (p). However, it is still an open question whether the above re-
sults can be extended to the case of vector fields. In fact, there is no known
results for vector fields in this direction.

In this paper, we study the hyperbolic structure on the chain components
of C1 vector fields. More precisely, our main problem can be formally stated
as follows.

Problem. If the chain component of a vector field containing a hyperbolic

periodic orbit is C1 robustly shadowable, then is it hyperbolic?

There are quite satisfactory answers for the systems (both in diffeomor-
phisms and in vector fields) given on the whole manifold. Robinson [18] and
Sakai [19] showed that the C1 interior of the set of diffeomorphisms having the
shadowing property coincides with the set of Axiom A diffeomorphisms with
the strong transversality condition.

Let us recall two recent papers which consider the above results for vector
fields instead of diffeomorphisms. The first one is given by Lee and Sakai [13]
to prove that a non-singular vector field belongs to the C1 interior of the set of
vector fields with the shadowing property if and only if it satisfies both Axiom
A and the strong transversality condition (that is, it is structurally stable). The
second one, by Pilyugin and Tikhomirov [17], deals with the singular vector
fields. In [17], they introduced a special class B of vector fields that are not
structurally stable to describe the C1 interior, Int1(OrientSh), of the set of
vector fields having the oriented shadowing property. Then they proved that
Int1(OrientSh \ B) is characterized by the set of Axiom A vector fields with
the strong transversality condition.

In attempting to solve Problem mentioned above, we face with several
difficulties. For instance, the hyperbolic-like structures near singular points
and near regular orbits of a vector field are qualitatively different, the time
reparametrization in the shadowing theory of vector fields causes the complex-
ity of the calculations, what kinds of dominated splitting (for flow or linear
Poincaré flow) are suitable to get the hyperbolic structure, etc.

In this paper, we give a positive answer of the above Problem if the chain
component does not contain a non-hyperbolic singularity.
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Figure 1. The pseudo orbit {(xi, ti)} is shadowed by the orbit
through y.

We shall describe the main definitions and results now. Let M be a compact
boundaryless Riemannian manifold. Denote by X 1(M) the set of all C1 vector
fields of M endowed with the C1 topology. Then every X ∈ X 1(M) generates
a C1 flow Xt : M × R → M , that is, a family of diffeomorphisms on M such
that Xs ◦ Xt = Xt+s for all t, s ∈ R, X0 = Id and dXt(p)/dt|t=0 = X(p)
for any p ∈ M . In this paper, for X,Y, . . . ∈ X 1(M), we always denote the
generated flows by Xt, Yt, . . ., respectively. For x ∈ M , let us denote the orbit
{Xt(x), t ∈ R} of the flow Xt (or X) through x by orb(x,Xt), or orb(x) if no
confusion is likely. We say that a point x ∈ M is a singularity of X if X(x) = 0;
and an orbit orb(x) is closed (or periodic) if it is diffeomorphic to a circle S1.

Let d be the distance induced from the Riemannian structure on M . A
sequence {(xi, ti) : xi ∈ M ; ti ≥ 1; a < i < b} (−∞ ≤ a < b ≤ ∞) is called a
δ-pseudo orbit or a δ-chain of Xt if for any a < i < b− 1, d(Xti(xi), xi+1) < δ.
We say that a compact invariant set Λ of Xt is shadowable for Xt if for any
ε > 0, there is δ > 0 satisfying the following property: given any δ-pseudo orbit
{(xi, ti) : −∞ ≤ i ≤ ∞} in Λ, there exist a point y ∈ M and an increasing
homeomorphism h : R → R such that

d(Xh(t)(y), Xt−Ti(xi)) < ε, Ti ≤ t < Ti+1,

where

Ti =











t0 + t1 + · · ·+ ti−1 for i > 0,

0 for i = 0,

−(t−1 + t−2 + · · ·+ ti) for i < 0.

Note that the above concept of pseudo orbit is slightly different from that of
pseudo orbit in [13, 17]. However we point out here that a compact invariant set
Λ is shadowable for Xt under the above definition if and only if it is shadowable
for Xt under the definition in [13, 17].

A point x ∈ M is called chain recurrent if for any δ > 0, there exists
a δ-pseudo orbit {(xi, ti) : 0 ≤ i < n} with n > 1 such that x0 = x and
d(Xtn−1(xn−1), x) < δ. The set of all chain recurrent points of Xt is called the
chain recurrent set of Xt, denoted by CR(Xt). It is easy to see that this set
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is closed and Xt-invariant. For any x, y ∈ M , we say that x ∼ y, if for any
δ > 0, there are a δ-pseudo orbit {(xi, ti) : 0 ≤ i < n} with n > 1 such that
x0 = x and d(Xtn−1(xn−1), y) < δ and a δ-pseudo orbit {(x′

i, t
′
i) : 0 ≤ i < m}

with m > 1 such that x′
0 = y and d(Xt′n−1

(x′
n−1), x) < δ. It is easy to see that

∼ gives an equivalence relation on the set CR(Xt). An equivalence class of ∼
is called a chain component of Xt (or X).

A compact invariant set Λ of Xt is called hyperbolic if there are constants
C > 0 and λ > 0 such that the tangent flow DXt : TΛM → TΛM leaves a
continuous invariant splitting TΛM = Es ⊕ 〈X〉 ⊕ Eu satisfying

∥

∥DXt|Es(x)

∥

∥ ≤ Ce−λt and
∥

∥DX−t|Eu(x)

∥

∥ ≤ Ce−λt

for any x ∈ Λ and t > 0, where 〈X〉 denotes the subspace generated by the
vector field X (for more details, see [7, 15]).

Let γ be a hyperbolic closed orbit of Xt. Then we know that there are a
C1 neighborhood U of X and a neighborhood U of γ such that for any Y ∈ U ,
there is a unique hyperbolic closed orbit γY which equals to

⋂

t∈R
Yt(U). The

hyperbolic closed orbit γY is called the continuation of γ with respect to Yt.
Contrary to the diffeomorphisms, the period of the continuation orbit γY may
not be equal to the period of γ.

For any hyperbolic closed orbit γ, the sets W s(γ) = {x ∈ M : Xt(x) →
γ as t → ∞} and Wu(γ) = {x ∈ M : Xt(x) → γ as t → −∞} are said to be
the stable manifold and unstable manifold of γ, respectively. We say that the
dimension of the stable manifold W s(γ) of γ is the index of γ, and denoted by
ind(γ).

Denote by CX(γ) the chain component of X which contains the hyperbolic
closed orbit γ. The homoclinic class ofXt associated to γ, denoted byHX(γ), is
defined as the closure of the transversal intersection of the stable and unstable
manifolds of γ, that is;

HX(γ) = W s(γ) ⋔ Wu(γ),

where W s(γ) is the stable manifold of γ and Wu(γ) is the unstable manifold of
γ. By definition, we easily see that the set is closed and Xt-invariant. Moreover
HX(γ) ⊂ CX(γ), but the converse is not true in general. For two hyperbolic
closed orbits γ1 and γ2 of Xt, we say γ1 and γ2 are homoclinically related,
denoted by γ1 ∼ γ2, if W

s(γ1) ⋔ Wu(γ2) 6= ∅ and W s(γ2) ⋔ Wu(γ1) 6= ∅.
When γ1 and γ2 are homoclinically related, their indices must be the same. By
Smale’s Theorem, it is well known that

HX(γ) = {γ′ : γ′ ∼ γ}.
A point x ∈ M is called nonwandering if for any neighborhood U of x, there

is t ≥ 1 such that Xt(U) ∩ U 6= ∅. The set of all nonwandering points of Xt is
called the nonwandering set of Xt, denoted by Ω(Xt). Let Sing(X) be the set
of all singularities of X , and let PO(Xt) be the set of all closed orbits (which
are not singularities) of Xt. Clearly, Sing(X) ∪ PO(Xt) ⊂ Ω(Xt). We say
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that X satisfies Axiom A if PO(Xt) is dense in Ω(Xt) \ Sing(X), and Ω(Xt)
is hyperbolic for Xt.

Now we give the definitions of robust shadowability for various invariant sets
of vector fields.

Definition 1.1. Let X ∈ X 1(M), and γ be a hyperbolic closed orbit of Xt.
The chain component CX(γ) containing γ is said to be C1 robustly shadowable

if there is a neighborhood U ⊂ X 1(M) of X such that for any Y ∈ U , CY (γY )
is shadowable for Yt, where γY is the continuation of γ.

Moreover we say that the chain recurrent set CR(Xt) is C1 robustly shad-

owable if there is a neighborhood U ⊂ X 1(M) of X such that for any Y ∈ U ,
CR(Yt) is shadowable for Yt, where CR(Yt) is the chain recurrent set of Yt.

Similarly, we can introduce the notions of C1 robust shadowability of ho-
moclinic class HX(γ) and nonwandering set Ω(Xt) as follows: HX(γ) is C1

robustly shadowable if there is a neighborhood U ⊂ X 1(M) of X such that for
any Y ∈ U , HY (γY ) is shadowable for Yt; Ω(Xt) is C1 robustly shadowable if
there is a neighborhood U ⊂ X 1(M) of X such that for any Y ∈ U , Ω(Yt) is
shadowable for Yt.

In this paper, we prove the following main theorem.

Main Theorem. Let X ∈ X 1(M), and let γ be a hyperbolic closed orbit of

Xt. If the chain component CX(γ) is C1 robustly shadowable, then it does not

contain a hyperbolic singularity. Moreover it is hyperbolic if CX(γ) does not

contain a non-hyperbolic singularity.

From the robustness of hyperbolic sets, it is easy to see if CX(γ) is hy-
perbolic, then it is C1 robustly shadowable. In the above theorem, the non-
existence of non-hyperbolic singularity in the chain component is a technical
condition that leaves an open question on possibility of removing the condi-
tion. The authors have no example of C1 robustly shadowable chain component
which contains a non-hyperbolic singularity at present time.

The paper is organized as follows. Section 2 is devoted to Poincaré map
and linear Poincaré flow (LPF) including two perturbation lemmas which are
necessary to prove our theorems. In particular, we introduce a theorem which
is crucial to get the hyperbolicity of invariant subsets for vector fields.

In Section 3, we show that the C1 robustly shadowable chain component
CX(γ) admits a dominated splitting for the linear Poincaré flow Ψt of X if
CX(γ) does not contain a non-hyperbolic singularity. To prove this, we first
show that there is no hyperbolic singularity contained in CX(γ) (Proposition
3.1). Then we claim the chain component CX(γ) and the homoclinic class
HX(γ) coincide (Lemma 3.5). Moreover, we prove that there is a lower bound
for the angles between tangent spaces of stable manifolds and unstable mani-
folds of hyperbolic closed orbits on normal sections (Proposition 3.7). Finally
we show that CX(γ) admits a Ψt-dominated splitting NCX(γ) = ∆s ⊕∆u with
dim∆s = ind(γ) (Proposition 3.9).
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In Section 4, we state and prove a proposition (Proposition 4.1) which is
important to prove our Main Theorem. The proposition originally comes from
the classical results by Mañé [14, Proposition II.1].

In Section 5, we prove that the Ψt-dominated splitting NCX(γ) = ∆s ⊕
∆u obtained in Section 3 is in fact a hyperbolic splitting with respect to the
linear Poincaré flow Ψt. The proof is completed by showing that if ∆s is not
contracting for Ψt, then we can find a “good” hyperbolic periodic point of a
hyperbolic closed orbit γ′ (γ′ is homoclinically related to γ) which contradicts
to the property (2) of Proposition 4.1.

2. Poincaré map and linear Poincaré flow

Hereafter we assume that the exponential map expp : TpM(1) → M is well
defined for all p ∈ M , where TpM(r) denotes the r-ball {v ∈ TpM : ‖v‖ ≤ r}
in TpM .

For any regular point x ∈ M (i.e., X(x) 6= 0), we let Nx = (span X(x))⊥ ⊂
TxM and Nx(r) the r-ball in Nx. Let N̂x,r = expx(Nx(r)). Given any regular

point x ∈ M and t ∈ R, we can take a constant r > 0 and a C1 map τ : N̂x,r →
R such that τ(x) = t and Xτ(y)(y) ∈ N̂Xt(x),1 for any y ∈ N̂x,r. Now we define
the Poincaré map

fx,t : N̂x,r → N̂Xt(x),1, fx,t(y) = Xτ(y)(y)

for y ∈ N̂x,r. Let MX = {x ∈ M : X(x) 6= 0}. Then it is easy to check that for
any fixed t there exists a continuous map r0 : MX → (0, 1) such that for any

x ∈ MX , the Poincaré map fx,t : N̂x,r0(x) → N̂Xt(x),1 is well defined and the

respective time function τ(y) satisfies 2t/3 < τ(y) < 4t/3 for y ∈ N̂x,r0(x).
Let t0 be fixed. At each x ∈ MX , one can consider a flow box chart

(Ûx,t0,δ, Fx,t0) at x such that

Ûx,t0,δ = {tX(x) + y : 0 ≤ t ≤ t0, y ∈ Nx(δ)} ⊂ TxM,

where Fx,t0 : Ûx,t0,δ → M is defined by Fx,t0(tX(x) + y) = Xt(expx y). Then
it is well known that if Xt(x) 6= x for any t ∈ (0, t0], then there is δ > 0 such

that Fx,t0 : Ûx,t0,δ → M is an embedding.

Lemma 2.1. Let t0 > 0 be given. Then there are a constant K > 1 and

a continuous function r1 : MX → (0, 1) such that for any x ∈ MX , if we

let Ûx = {tX(x) + y : 0 ≤ t ≤ t0, y ∈ Nx(r1(x))} and Fx = Fx,t0 |Ûx
, then

K−1 < ‖DuFx‖ and m(DuFx) < K for any u ∈ Ûx, where m(DuFx) denotes

the minimum norm of DuFx.

Proof. See [16, pages 290–291]. �

For ε > 0 and r > 0, let Nε(N̂x,r) be the set of all diffeomorphisms φ :

N̂x,r → N̂x,r such that supp(φ) ⊂ N̂x,r/2 and dC1(φ, id) < ε. Here dC1 is the



ROBUSTLY SHADOWABLE CHAIN COMPONENTS OF C1 VECTOR FIELDS 23

usual C1 metric, id denotes the identity map and the supp(φ) is the closure of
the set of points where it differs from id.

Proposition 2.2. Let X ∈ X 1(M), and let U ⊂ X 1(M) be a neighborhood of

X. For any constant t0 > 0, there are a constant ε > 0 and a neighborhood V
of X such that for any Y ∈ V, there exists a continuous map r : MY → (0, 1)
satisfying the following property: for any x ∈ MY satisfying Yt(x) 6= x for

0 < t ≤ 2t0 and any φ ∈ Nε(N̂x,r(x)), there is Z ∈ U such that Y (z) = Z(z)

for all z ∈ M\Fx(Ûx) and Zt(y) = Yt(φ(y)) for any y ∈ N̂x,r(x) and 2t0/3 <

t < 4t0/3, where Fx(Ûx) is the flow box of Y at x.

Proof. See [16, pages 293–295]. �

Remark 2.3. In Proposition 2.2, it is easy to see that if φ(x) = x, then fx,t0 ◦φ
is the Poincaré map of Z, where fx,t0 : N̂x,r(x) → N̂Xt0 (x),1

is the Poincaré map
of Y .

To study the Stability Conjecture (now it is proved; for more details, see [7])
posed by Palis and Smale, Liao [10] introduced the notion of linear Poincaré
flow for a C1 vector field as follows. Let N =

⋃

x∈MX
Nx be the normal bundle

based on MX . Then we can introduce a flow (which is called a linear Poincaré

flow for X)

Ψt : N → N , Ψt|Nx = πNx ◦DxXt|Nx ,

where πNx : TxM → Nx is the natural projection along the direction of X(x),
and DxXt is the derivative map of Xt. Then we can see that

Ψt|Nx = Dxfx,t and fx,t ◦ expx = expXt(x) ◦Ψt.

Using Proposition 2.2, we can prove the following lemma which has the same
philosophy as that of the Franks’ Lemma for diffeomorphisms. One can find
another proof for the lemma in [2].

Lemma 2.4. Let U be a C1 neighborhood of X ∈ X 1(M). For any T > 0,
there exists a constant η > 0 such that for any tubular neighborhood U of

an orbit arc γ = X[0,T ](x) of Xt and for any η-perturbation F of the linear

Poincaré flow ΨT |Nx, there exists a vector field Y ∈ U such that the linear

Poincaré flow Ψ̃T |Nx associated to Y coincides with F , and Y coincides with

X outside U and along X[−t1,t2](x), where t1 = min{t > 0, X−t(x) ∈ ∂U} and

t2 = min{t > 0, Xt(x) ∈ ∂U}.
We define the notions of hyperbolic splitting and dominated splitting for

linear Poincaré flows as follows.

Definition 2.5. Let Λ be an invariant set of Xt which contains no singularity.
We call a Ψt-invariant splitting NΛ = ∆s ⊕∆u is an l-dominated splitting if

∥

∥Ψt|∆s(x)

∥

∥ ·
∥

∥Ψ−t|∆u(Xt(x))

∥

∥ ≤ 1

2
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for any x ∈ Λ and any t ≥ l, where l > 0 is a constant. Moreover, if dim(∆s
x)

is constant for all x ∈ Λ, then we say that the splitting is a homogeneous
dominated splitting.

We say a Ψt-invariant splitting NΛ = ∆s ⊕ ∆u is a hyperbolic splitting if
there exist C > 0 and λ ∈ (0, 1) such that

∥

∥Ψt|∆s(x)

∥

∥ ≤ Cλt and
∥

∥Ψ−t|∆u(x)

∥

∥ ≤ Cλt

for any x ∈ Λ and t > 0.

The geometric interpretation of the dominated splitting is that for any one-
dimensional subspace L ⊂ ∆s

x ⊕∆u
x not contained in ∆s

x, x ∈ Λ, the angle (see
the definition of angle in Section 3) between Ψt(L) and ∆u (Xt(x)) converges
exponentially to zero as t → ∞.

The following theorem which is crucial to get the hyperbolicity of compact
invariant sets for vector fields was proved by Liao and Doering. For a detailed
proof, see Proposition 1.1 in [3].

Theorem 2.6. Let Λ ⊂ M be a compact invariant set of Xt such that Λ ∩
Sing(X) = ∅. Then Λ is hyperbolic for Xt if and only if the linear Poincaré

flow Ψt restricted on Λ has a hyperbolic splitting NΛ = ∆s ⊕∆u.

3. Chain component, homoclinic class and dominated splitting

In this section we show that if the chain component CX(γ) of X containing
a hyperbolic closed orbit γ is C1 robustly shadowable, then there is no hy-
perbolic singularity contained in CX(γ), and CX(γ) equals to the homoclinic
class HX(γ). Finally we prove that CX(γ) admits a Ψt-dominated splitting
NCX(γ) = ∆s ⊕ ∆u with dim(∆s) = ind(γ) if it does not contain a non-
hyperbolic singularity.

Proposition 3.1. Let X ∈ X 1(M), and let γ be a hyperbolic closed orbit of

Xt. If CX(γ) is C1 robustly shadowable, then it does not contain a hyperbolic

singularity.

Proof. Assume there is a hyperbolic singularity σ contained in CX(γ). We
know that there is a constant η > 0 such that

W s
η (σ) = {x ∈ M : d(Xt(x), σ) ≤ η for all t > 0} ,

Wu
η (σ) = {x ∈ M : d(Xt(x), σ) ≤ η for all t < 0} ,

W s
η (γ) = {x ∈ M : d(Xt(x), γ) ≤ η for all t > 0} ,

Wu
η (γ) = {x ∈ M : d(Xt(x), γ) ≤ η for all t < 0}

are embedded submanifolds of M , and satisfy W s
η (σ) ⊂ W s(σ), Wu

η (σ) ⊂
Wu(σ), W s

η (γ) ⊂ W s(γ) and Wu
η (γ) ⊂ Wu(γ).

Since CX(γ) is shadowable for Xt, there is δ > 0 such that every δ-pseudo
orbit in CX(γ) can be η-shadowed. Since σ ∈ CX(γ), we can construct a
δ-pseudo orbit ξ = {(xi, ti)}ni=0 such that all xi ∈ CX(γ) and x0 = σ and
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xn(= p) ∈ γ. We extend ξ to {(xi, ti)}∞i=−∞ by defining x−k = σ, t−k = 1 for all
k > 0 and xn+k = Xk(p), tn+k = 1 for all k ≥ 0. Let y be a point in M which η
shadows the extended pseudo orbit. Then we can easily check that y ∈ Wu(σ)∩
W s(γ). Similarly we can find a point y′ satisfying y′ ∈ Wu(γ) ∩W s(σ). Since
dimWu(σ) + dimW s(σ) = dimM and dimWu(γ) + dimW s(γ) = dimM − 1,
we get either

TyW
u(σ) + TyW

s(γ) 6= TyM or Ty′W s(σ) + Ty′Wu(γ) 6= Ty′M.

In the following steps, we will prove that TyW
u(σ)+TyW

s(γ) 6= TyM leads
to a contradiction by applying the C1 robust shadowability of CX(γ). Similarly
we can show that Ty′W s(σ) + Ty′Wu(γ) 6= Ty′M leads to a contradiction.

Without loss of generality, we assume that there is p ∈ γ such that y, y′ ∈
N̂p,r. Let f : N̂p,r → N̂p,1 be the Poincaré map associated to the period
of p. For any δ > 0, by applying Proposition 3.1 of [6], one can construct

a diffeomorphism f ′ : N̂p,r → N̂p,1 such that dC1(f, f ′) < δ, f ′ keeps the
fixed point p, just differs from f in a δ-neighborhood of p, and f ′ satisfies the
following properties:

(a) y ∈ W s(p, f ′), y′ ∈ Wu(p, f ′),
(b) there is r′ > 0 such that exp−1

p ◦f ′ ◦ expp(v) = L(v) whenever |v| ≤ r′,
where L : Np → Np is a linear map close to Dpf and all eigenvalues of
L is are multiplicity 1,

(c) TyW
s(p, f ′) = TyW

s(p, f).

Then we get the following lemma using Proposition 2.2.

Lemma 3.2. For any neighborhood U of X, there exists Y1 ∈ U such that Y1

keeps the orbit of γ unchanged, just differs from X in a small neighborhood of

γ, and satisfies the following properties:

(1) y ∈ Wu(σ, Y1) ∩W s(γ, Y1) and y′ ∈ W s(σ, Y1) ∩Wu(γ, Y1),

(2) if f ′ : N̂p,r → N̂p,1 is the Poincaré map associated to Y1 with the period

of γ, then there exist r′ > 0 and a linear map A such that any eigenvalue

of A is of multiplicity 1 satisfying f ′|N̂p,r′
= expp ◦A ◦ exp−1

p |N̂p,r′
,

(3) TyW
u(σ, Y1) + TyW

s(γ, Y1) 6= TyM .

It is easy to check that σ, y and y′ are elements of the chain component of
Y1 that contains γ. Let Np = ∆s ⊕∆u be the hyperbolic splitting associated
to f ′. Since f ′ is locally linear at p, there is η′ > 0 such that

W s
η′ (γ, Y1) ∩ N̂p,r ⊂ expp(∆

s) and Wu
η′(γ, Y1) ∩ N̂p,r ⊂ expp(∆

u).

Without loss of generality, we can assume y ∈ W s
η′(γ, Y1)∩ N̂p,r. Let V

u(y) be

the connected component of Wu(σ, Y1) ∩ N̂p,r containing y. Then

exp−1
p (V u(y) ⊂ Np and TyV

u(y) = Ty(W
u(σ, Y1) ∩Np).
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Let L ⊂ Np be an affine space tangent to exp−1
p (V u(y)) at exp−1

p (y). Denote by
π : Np → ∆u the natural projection parallel to ∆s. Then the non-transversality
of V u(y) and W s(p, f ′) at y means dim π(L) < dim∆u.

For any ε > 0, let Lε = {v ∈ L : ‖v − exp−1
p (y)‖ < ε}. Choose t1 > 0 such

that Y1[−t1,−t1+1](y) ∩ Br′(γ) = ∅. Using Proposition 2.2, one can construct
a vector Y arbitrarily close to Y1 and just differs from Y1 in an arbitrarily
small neighborhood of the arc Y1[−t1,−t1+1](y) such that there is ε > 0 such

that expp(Lε) is contained in the connected component of Wu(σ, Y ) ∩ N̂p,r

containing y. Now we will prove the CY (γ) is not shadowable for Yt.

For any ε > 0, we denote by Cu
ε (y) the set of all points x ∈ N̂p,r which

has the following property: there exists an increasing continuous function h :
(−∞, 0] → R such that d(Yh(t)(x), Yt(y)) < ε for all t ∈ (−∞, 0]. Then we have
the following lemma.

Lemma 3.3. There exists ε0 > 0 such that Cu
ε (y) ⊂ expp(Lε) for any 0 < ε ≤

ε0.

Proof. Let η > 0 be a constant such that the local unstable manifold Wu
η (σ, Y )

is well defined. Choose a constant t0 > 0 satisfying Y−t0(y) ∈ Wu
η/2(σ, Y ).

By the Tubular Flow Theorem, we know that there is ε1 > 0 such that if
a point x ∈ M and an increasing continuous function h : R → R satisfy
d(Yh(t)(x), Yt(y)) < ε1 for all t ∈ [−t0, 0], then

t0
2

< h(0)− h(−t0) <
3t0
2

.

Choose ε2 > 0 such that Bε2(y) ∩ Y3t0/2(W
u
η (σ, Y )) ⊂ expp Lε. Then the

constant ε = min{η/2, ε1, ε2} satisfies the lemma. �

Denote by g : N̂p,r → N̂p,r the Poincaré map associated to Y and the
hyperbolic closed orbit γ. Let τ be the period of γ. We can assume that r is
small enough so that for any x ∈ N̂p,r, the first return time τ(x) of y satisfies

3τ/4 < τ(x) < 5τ/4 for all x ∈ N̂p,r. From Lemma 3.2, there is r′ > 0 such
that

g|N̂p,r′
= expp ◦A ◦ exp−1

p |N̂p,r′
.

From the Tubular Flow Theorem, one can get the following lemma.

Lemma 3.4. For any ε′ > 0, there exists ε > 0 satisfying the following

properties: for any x ∈ N̂p,r′ , if a point x′ ∈ M and an increasing contin-

uous map h : [0,+∞) → [0,+∞) satisfies d(Yt(x), Yh(t)(x
′)) < ε for any

0 ≤ t ≤ τ(x), then there exists a, b ∈ (−τ/10, τ/10) such that

(1) Yh(0)−a(x
′) ∈ N̂p,r,

(2) | exp−1
p (Yh(0)−a(x

′))− exp−1
p (x)| < ε′,

(3) Yh(τ(x))+b(x
′) ∈ N̂p,r,

(4) | exp−1
p (Yh(τ(x))+b(x

′))− exp−1
p (Yτ(x)(x))| < ε′, and

(5) h(τ(x)) − h(0) + b+ a is just the first return time of Yh(0)−a(x
′).
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Let λ1 be the eigenvalue of A which satisfies

|λ1| = min{|λ| : λ is an eigenvalue of A with |λ| > 1}.
By Lemma 3.2, λ1 has multiplicity 1. Let Eu

1 be the eigenspace corresponding
to the eigenvalue λ1, and ∆uu be the eigenspace associated to the other unstable
eigenvalues. Now we have two possible cases: λ1 is real or λ1 is complex.

Case 1: λ1 is real. In the construction of Y , we can assume π(L)∩Eu
1 = {0}

(since dimπ(L) < dim∆u). We can also assume that y′ (which is contained
in the intersection of W s(σ, Y ) and Wu(σ, γ)) is very close to p, but it is not
contained in expp ∆

uu. Now we find ε > 0 such that for any δ > 0, there exists
a δ-pseudo orbit which can not be ε-shadowed. In the following steps, we will
take an equivalent norm ‖ · ‖ defined on Np = ∆s ⊕ Eu

1 ⊕∆uu defined by:

‖v1 + v2 + v3‖ = max {‖v1‖, ‖v2‖, ‖v3‖}
for any v1 ∈ ∆s, v2 ∈ Eu

1 , and v3 ∈ ∆uu.

Choose ε1 > 0 such that B(2ε1) = {expp(v) : v ∈ Np, ‖v‖ ≤ 2ε1} ⊂ N̂p,r′ .

Without loss of generality, we can assume {gn(y) : n ∈ Z
+} ⊂ B(ε1) and

expp(Lε) cross the ball B(2ε1) (otherwise we just choose a large l and use gl(y)
instead of y). We can also assume y′ ∈ B(2ε1). Choose ε′ ∈ (0, ε0) such that
d(exp−1

p y′,∆uu) > 2ε′. Take a constant 0 < ε < ε0 (ε0 is given in Lemma 3.3)
which satisfies Lemma 3.4 associated to ε′/2. We will show that for any δ > 0,
we can construct a δ-pseudo orbit of Yt which can not be ε-shadowed.

Since Eu
1 is the eigenspace corresponding to the weakest expanding direction,

we have Akπ(L) → ∆uu as k → ∞. Hence, there is K > 0 such that for any
k ≥ K,

d(y′, Ak(π(L))) > ε′/2.

Let ym = gm(y). Then it is easy to check that d(p, ym) → 0 as m → +∞. If we
let y′−n = g−ny′, we have d(p, y′−n) → 0 as n → +∞. We construct a pseudo

orbit ξ = {(xi, ti)}+∞
i=−∞ by defining xi = Xi(ym) for i < 0, xi = Xi(y

′
−n) for

i ≥ 0, and all ti = 1. If there is zm,n ∈ M which ε-shadows the pseudo orbit ξ,
then there is an increasing continuous map h : R → R such that

d(Xh(t)(zm,n), Xt(ym)) < ε for t < 0, and

d(Xh(t)(zm,n), Xt(y
′
−n)) < ε for t > 0.

Let τi be the first return time of gi(y′−n) and Ti =
∑n

i=0 ti for i = 0, 1, . . . , n.
By Lemma 3.4, there is ai ∈ [−τ/10, τ/10] such that

Yh(Ti)−ai
(zm,n) ∈ N̂p,r′ and d(Xh(Ti)−ai

(zm,n), g
i(y′−n)) < ε′/2

for i = 0, 1, . . . ,m. Let xi = Xh(Ti)−ai
(zm,n). By Lemma 3.4, we get

xi+1 = g(xi) and ‖ exp−1
p (gi(y′−n))− exp−1

p (xi)‖ < ε′/2

for i = 0, 1, . . . , n. Similarly, we can take x−i = g−i(x0) which satisfies

‖ exp−1
p (g−i(y′m))− exp−1

p (xi)‖ < ε′/2
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for 0 ≤ i ≤ m. From Lemma 3.3, we have x−m ∈ expp(Lε) and hence x−m+k ∈
gk(expp(Lε)). It means that

exp−1
p (x−m+k) ∈ Ak(exp−1

p (y)) +Ak(π(L))

for i = 0, . . . ,m+ n. If m+ n > K, then

‖ exp−1
p (gn(y′−n))− exp−1

p (xn)‖ = ‖y′ − exp−1
p (xm)‖ > ε′/2,

and so we get a contradiction.
Case 2: λ1 is complex. Since dimπ(L) < dim(Eu

1 ⊕ ∆uu), we can assume
π(L) ∩ Eu

1 6= Eu
1 . Let λ1 = |λ1|eiθ. Without loss of generality, we may assume

θ is a rational angle. Then {Ak(π(L) ∩Eu
1 ) : k ∈ Z} consists of finite lines.

After an arbitrarily small perturbation, we can also assume that π1(y
′) is not

contained in {Akπ(L) ∩ Eu
1 : k ∈ Z}, where π1 denotes the projection from ∆u

to Eu
1 . Similarly we can choose a small constant ε′ > 0 such that

2ε′ < d
(

y′, {Ak(π(L) ∩ Eu
1 ) : k ∈ Z}

)

.

If k is large enough, we have d(y′, Ak(π(L))) > ε′. Let ym = gm(y) and
y′−n = g−ny′. It is easy to check that d(ym, y′−n) → 0 as m,n → +∞. As

in the previous case, we can construct a pseudo orbit ξ = {(xi, ti)}+∞
i=−∞ by

defining xi = Xi(ym) for i < 0, xi = Xi(y
′
−n) for i ≥ 0, and all ti = 1. Let ε0 be

the constant given in Lemma 3.3, and take a constant ε ∈ (0, ε0) corresponding
to ε′/2 in Lemma 3.4. Then we can see that the pseudo orbit ξ can not be ε-
shadowed when m+n is large enough. This completes the proof of Proposition
3.1. �

We know that every point in a shadowable chain component can be approx-
imated by homoclinic points as we see in the following lemma.

Lemma 3.5. Let X ∈ X 1(M), and let γ be a hyperbolic closed orbit of Xt.

If CX(γ) is shadowable, then for any point x ∈ CX(γ) and ε > 0, there exists

y ∈ W s(γ) ∩Wu(γ) satisfying d(x, y) < ε; that is, CX(γ) = HX(γ).

Proof. For any x ∈ CX(γ) and any δ > 0, we can construct a δ-pseudo orbit
{(xi, ti)}ni=−k in CX(γ) such that x0 = x. Then we can extend the finite pseudo
orbit to an infinite pseudo orbit by defining; xn+i = Xi(xn) and tn+i = 1 for
i ≥ 0, and x−(k+i) = X−i(x−k) and t−(k+i+1) = 1 for i ≥ 1. Fix η > 0 small
enough so that

W s
η (γ) = {x ∈ M : d(Xt(x), γ) ≤ η for all t > 0}

and

Wu
η (γ) = {x ∈ M : d(Xt(x), γ) ≤ η for all t < 0}

are embedded submanifolds of M , and satisfy W s
η (γ) ⊂ W s(γ) and Wu

η (γ) ⊂
Wu(γ). For any 0 < ε < η, if y ε-shadows ξ then we can see y ∈ W s(γ)∩Wu(γ)
and d(x, y) < ε. This completes the proof of Lemma 3.5. �
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As we can see in the following proposition, the C1 robust shadowability
prevents the existence of non-transverse homoclinic points.

Proposition 3.6. Let X ∈ X 1(M), and let γ be a hyperbolic closed orbit of

Xt. If CX(γ) is C1 robustly shadowable, then there exists a neighborhood U of

X such that for any Y ∈ U and any y ∈ W s(γY , Y ) ∩Wu(γY , Y ), we have

TyM = TyW
s(γY , Y )⊕ TyW

u(γY , Y ).

Proof. The proof is similar to the proof of Proposition 3.1. In fact, we can get
a contradiction if we assume TyW

s(γY , Y ) + TyW
u(γY , Y ) 6= TyM . We just

note here that we can take X−T (y) for a large T to replace the point y′ in the
proof of Proposition 3.1. We omit the details here. �

Now we show that if CX(γ) is C1 robustly shadowable and does not con-
tain a non-hyperbolic singularity, then CX(γ) admits a Ψt-dominated splitting
NCX(γ) = ∆s ⊕∆u with dim(∆s) = ind(γ). For this, let us first introduce the

notion of angle between two subspaces of Rd. Let E and F be two subspaces
of Rd with E ⊕ F = R

d. Hence dim(F ) = dim(E⊥) and F is the graph of the
linear map L : E⊥ → E defined as follows: given v ∈ E⊥, there exists a unique
pair (u, v), u ∈ E,w ∈ F such that v + u = w; define L(v) = u so that L is
linear and graph(L) = F . We define the angle ∠(E,F ) between E and F by

∠(E,F ) =
1

‖L‖
(for more details, see [14]).

From Proposition 3.6, we have the following proposition that gives a lower
bound for the angles between tangent spaces of stable manifolds and unstable
manifolds of hyperbolic closed orbits on normal sections.

Proposition 3.7. Let X ∈ X 1(M), and let γ be a hyperbolic closed orbit

of Xt. If CX(γ) is C1 robustly shadowable, then there exist a neighborhood

V1 of X and a positive constant α such that for any Y ∈ V1 and any y ∈
W s(γY , Y ) ∩Wu(γY , Y ), we have

∠ (TyW
s(γY , Y ) ∩Ny, TyW

u(γY , Y ) ∩Ny)) ≥ α.

Proof. Let U be a neighborhood of X given in Proposition 3.6, and let V1 and
ε be given in Proposition 2.2 associated to U and t0 = 1. Let α = ε/10. We
will prove that V1 and α satisfy the conclusion of Proposition 3.7.

For Y ∈ V1 and y ∈ W s(γY , Y ) ∩Wu(γY , Y ), let

∆s = TyW
s(γY , Y ) ∩Ny and ∆u = TyW

u(γY , Y ) ∩Ny.

If ∠(∆s,∆u) < α, then there exist v ∈ ∆u and w ∈ (∆u)⊥ such that |v| = 1,
|w| < α and v + w ∈ ∆s. Select a linear map L : ∆u → (∆u)⊥ such that
‖L‖ = |w| and L(v) = w. Let T : Ny → Ny be the linear map given by

(

id 0
L id

)
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with respect to the decomposition Ny = ∆u ⊕ (∆u)⊥. Then one can see that

‖T − id‖ < α and T (∆u) ∩∆s 6= {0}.
Let β : [0, 1] → [0, 1] be a bump function satisfying the following properties:

β|[0,1/3] = 1, β|[2/3,1] = 0 and 0 ≤ |β′(x)| < 4

for any x ∈ [0, 1]. For r > 0 small enough, one can define a map g : N̂y,r → N̂y,1

by

g(z) = expp

(

exp−1
p (z) + β

(

| exp−1
p (z)|
r

)

(T − id) exp−1
p (z)

)

for any z ∈ N̂y,r. Then we see that if r is small enough, then dC1(g, id) < ε.
By applying Proposition 2.2, we can choose Z ∈ U such that Z keeps

the orbit of y unchanged, just differs with Y in Y[0,1]( ˆNy,r), and Zt(x) =

Yt(g(x)) for any x ∈ N̂y,r. If r is small enough, then the connected com-

ponent of Wu(γY , Y ) ∩ N̂y,r containing y is contained in Wu(γY , Z) and the

connected component ofW s(γY , Y )∩N̂Yt(y),r containing Yt(y) is also contained
in W s(γY , Z). By the construction of g, we have

NYt(y) 6=
(

TYt(y)W
s(γ, Z) ∩NYt(y)

)

⊕
(

TYt(y)W
u(γ, Z) ∩NYt(y)

)

.

This contradicts to Proposition 3.6, and so completes the proof. �

In the following lemma, we show that the set W s(γ, Y ) ∩Wu(γ, Y ) has the
homogeneous dominated splitting structure if CX(γ) is C1 robustly shadowable.

Lemma 3.8. Let X ∈ X 1(M), and let γ be a hyperbolic closed orbit of Xt. If

CX(γ) is C1 robustly shadowable, then there exist a neighborhood V of X and

a constant T > 0 such that for any Y ∈ V, x ∈ W s(γY , Y ) ∩Wu(γY , Y ), and
t ≥ T ,

log
∥

∥Ψt,Y |∆s(x,Y )

∥

∥− logm
(

Ψt,Y |∆u(x,Y )

)

< −1.

Moreover, dim(∆s(x, Y )) = ind(γ) for all x ∈ W s(γY , Y ) ∩Wu(γY , Y ).

Proof. Let V1 and α be given in Proposition 3.7. Let V and ε be given by
Proposition 2.2 associated to V1 and time t0 = 1. Let δ = αε

10(1+α) . One can

check that for any subspaces E,F ⊂ R
d with E ⊕ F = R

d, if ∠(E,F ) > α and
a linear map T : Rd → R

d satisfies

‖T |E − id‖ < δ and T |F = id,

then T satisfies ‖T − id‖ < ε/10 (for more details, see Lemma II.10.b in [14]).
Choose m > 0 such that δ(1 + δ)m > e(α−1 + 1) and T = 2m+ 2.

Assume there exist Y ∈ V , x ∈ W s(γY , Y ) ∩Wu(γY , Y ), and tx > T such
that

log
∥

∥Ψtx,Y |∆s(x,Y )

∥

∥− logm
(

Ψtx,Y |∆u(x,Y )

)

≥ −1.
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Then there exist u ∈ ∆s(x, Y ) and v ∈ ∆u(x, Y ) with |u| = |v| = 1 such that

|Ψtx,Y (u)|
|Ψtx,Y (v)|

> e−1.

By Hahn-Banach Theorem, we can take a linear map L : ∆u(x, Y ) → ∆s(x, Y )
such that

L(v) = δu and ‖L‖ = δ.

Let k = [tx/2], ti = 2i for all 0 ≤ i ≤ k − 1, and tk = tx. Let T0 : Nx → Nx be
a linear map such that

T0|∆s(x,Y ) = id and T0|∆u(x,Y ) = id+ L.

Let Ti : NYti
(x) → NYti

(x) be a linear map such that

Ti|∆s(Yti
(x),Y ) = (1 + δ)id and Ti|∆u(Yti

(x),Y ) = id

for all 1 ≤ i ≤ k−1. Then we can see that Ti satisfies ‖Ti−id‖ < ε/10. If r > 0

is sufficiently small, by Franks’ Lemma, there are gi : N̂Yti
(x),r → N̂Yti

(x),r, 0 ≤
i ≤ k − 1 such that

gi(Yti(x)) = Yti(x), DYti
(x)gi = Ti, and dC1(gi, id) < ε.

By applying Proposition 2.2, we get a vector field Z ∈ V1 such that Z keeps the
orbit of x unchanged, and just differs from Y in a neighborhood of Y[0,tx](x). If
r is small enough, then the connected component ofWu(γY , Y )∩Nx containing
tx is also contained in Wu(γY , Z) and the connected component ofW s(γY , Y )∩
NYtx (x)

containing Ytx(x) is also contained in W s(γY , Z). Hence,

v ∈ TxW
u(γY , Z) ∩Nx and Ψtx,Y (u) ∈ TYtx (x)

W s(γY , Z) ∩NYtx (x)
.

By the construction of Z, we know that

Ψ2,Y (v + δu) ∈ TY2(x)W
u(γ, Z) ∩NY2(x)

and

Ψti,Y (v) + δ(1 + δ)i−1Ψti,Y (u) ∈ TYti
(x)W

u(γ, Z) ∩NYti
(x)

for all 1 ≤ i ≤ k. Since
|Ψtx,Y (u)|
|Ψtx,Y (v)|

> e−1,

we have
|Ψtx,Y (v)|

|δ(1 + δ)k−1Ψtx,Y (u)|
< eδ−1(1 + δ)−k+1 <

α

1 + α
.

This implies that

∠

(

TYti
(x)W

u(γ, Z) ∩NYti
(x), TYti

(x)W
u(γ, Z) ∩NYti

(x)

)

< α.

The contradiction completes the proof. �
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From Proposition 3.1, we know that if CX(γ) is C1 robustly shadowable, then
there is no hyperbolic singularity contained in CX(γ). Therefore, if CX(γ) has
no non-hyperbolic singularity, then CX(γ) has no singularity. It is well known
that if an invariant set Λ admits a dominated splitting for the linear Poincaré
flow and the closure, Λ, of Λ has no singularity, then the dominated splitting
over Λ can be extended to Λ (for more details, see [9]). Hence, Lemma 3.8
implies that if CX(γ) does not have a non-hyperbolic singularity, then CX(γ)
admits a dominated splitting. In fact, we have the following proposition.

Proposition 3.9. If CX(γ) is C1 robustly shadowable and does not contain a

non-hyperbolic singularity, then CX(γ) admits a Ψt-dominated splitting NCX(γ)

= ∆s ⊕∆u with dim(∆s) = ind(γ).

4. The main proposition

In this section, we prove the following proposition.

Proposition 4.1. Let X ∈ X 1(M), and let γ be a hyperbolic closed orbit of Xt.

If CX(γ) is C1 robustly shadowable and contains no non-hyperbolic singularity,

then there exist constants T ≥ 1, η > 0, and T̃ > 0 such that for any γ′ ∼ γ, if
the period τ of γ′ is greater than T̃ , then the following properties are satisfied:

(1) for any x ∈ γ′ and t ≥ T ,

1

t

(

log
∥

∥Ψt|∆s(x)

∥

∥− logm
(

Ψt|∆u(x)

))

< −2η;

(2) for any x ∈ γ′ and any partition 0 = T0 < T1 < · · · < Tι = τ with

T ≤ Ti − Ti−1 < 2T for i = 1, 2, . . . , ι, we have

1

τ

ι
∑

i=1

log
∥

∥

∥
ΨTi−Ti−1 |∆s(XTi−1

(x))

∥

∥

∥
< −η,

1

τ

ι
∑

i=1

logm
(

ΨTi−Ti−1 |∆u(XTi−1
(x))

)

> η.

The above proposition is in sprit extracted from Proposition II.1 and Lemma
II.3 in [14]. The inequality in (1) in the above proposition just comes from
Lemma 3.8. In fact, for any periodic point x, if orb(x) ∼ γ, then one can find
a sequence xk ∈ W s(γ,X) ⋔ Wu(γ,X) such that xk → x as k → +∞. By
taking T as in Lemma 3.8 and η < 1

4T , one can verify the inequality in (1).
Now we prove the inequalities in (2) of the above proposition. The first

inequality in (2) expresses so-called contracting in period property (see Figure
2). To prove (2), let us recall a well known fact proved by Mañé in ([14], Lemma
II.5).

Lemma 4.2. Given any k ∈ N, K > 0 and ε > 0, there exist 0 < λ < 1, m > 0
and N > 0 such that for any sequence A = {A0, A1, . . . , An−1} ⊂ GL(k) with

n ≥ N and every ‖Ai‖ ≤ K, we have
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Figure 2. Contracting in period property

(1) either
∏[n/m]−1

i=0 ‖Aim+m−1 ◦Aim+m−2 ◦ · · · ◦Aim‖ < λ[n/m], or
(2) there exists B = {B0, B1, . . . , Bn−1} with every ‖Bi−Ai‖ < ε such that

Bn−1 ◦Bn−2 ◦ · · · ◦B0 has an eigenvalue µ with |µ| ≥ 1.

Since CX(γ) contains no singularity, there exists K > 0 such that ‖Ψt|Nx‖ <
K/2 for any x ∈ CX(γ) and 1 ≤ t ≤ 2. Then there exists r0 > 0 such that for

any x ∈ CX(γ), one has ‖Dyfx,t‖ < K for any y ∈ N̂x,r0 and 1 ≤ t ≤ 2. Let
U be a neighborhood of X such that CY (γY ) is shadowable for Y ∈ U . Let
ε and r(x) be chosen as in Proposition 2.2 associated to U and t0 = 1. Then
there exist ε1 > 0 and r1 > 0 such that for any x ∈ CX(γ) and t ∈ [1, 2], if a

map g : N̂x,r0 → N̂Xt(x),1 just differs from fx,t in the neighborhood N̂x,r1 and

dC1(f, g) < ε1, then f−1
x,t ◦ g ∈ Nε(N̂x,r1(x)).

Now we take K > 0 as in the previous paragraph, k equals to the dimension
of Es(γ) and ε = αε1

10(1+α) (where α is in Lemma 3.7). Let λ, m > 0 and N > 0

be given in Lemma 4.2. Now we take T = m, T̃ = 2N and η = − log λ
2m . We

will prove that the constants T, T̃ and η satisfy the first inequality in (2) of
Proposition 4.1.

Let γ′ be a closed orbit which is homoclinically related to γ, and let τ > T̃
be the period of γ′. Let x ∈ γ′, and let 0 = T0 < T1 < · · · < Tι = τ be a
partition of [0, τ ] with T ≤ Ti+1 − Ti < 2T for i = 0, 1, . . . , ι− 1. Let us divide
[Ti, Ti+1] into m parts as

Ti < Ti +
Ti+1 − Ti

m
< Ti + 2

Ti+1 − Ti

m
< · · · < Ti+1.

Then we get a subdivision

0 = t0 < t1 < t2 < · · · < tιm = τ

which satisfies the following properties:
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(a) tim = Ti for i = 0, 1, . . . , ι,
(b) ti+1 − ti ∈ [1, 2) for i = 0, 1, . . . , ι,
(c) ιm > N .

Let Ai = Ψti+1−ti |∆s(Xti
(x)) for i = 0, 1, . . . , ιm− 1, and let A = {A0, A1, . . . ,

Aιm−1}. From Lemma 4.2, we can see that if the inequality

1

τ

ι
∑

i=1

log
∥

∥

∥
ΨTi−Ti−1 |∆s(XTi−1

(x))

∥

∥

∥
< −η

does not hold, then there exists B = {B0, B1, . . . , Bιm−1} such that ‖Bi−Ai‖ <
ε and Bιm−1 ◦ Bιm−2 ◦ · · · ◦ B0 has an eigenvalue µ with |µ| > 1. Since
Aιm−1 ◦ Aιm−1 ◦ · · · ◦ A0 is contracting, we can assume that B satisfies the
following properties:

(a) Bιm−1 ◦ Bιm−2 ◦ · · · ◦ B0 has all eigenvalue less than or equal 1 in
modulus,

(b) for each a ∈ [0, 1),

(aBιm−1 + (1− a)Aιm−1) ◦ (aBιm−2 + (1− a)Aιm−2) ◦ · · · ◦ (aB0 + (1− a)A0)

is contracting, i.e., the eigenvalues are less than 1 in modulus.

Denote by d(A,B) = sup{‖Ai−Bi‖ : i = 0, 1, . . . , ιm−1}. Given any a ∈ [0, 1),
we have the following lemma.

Lemma 4.3. For any ρ > 0, there exists a sequence of diffeomorphisms gi :
R

k → R
k, i = 0, 1, . . . , ιm− 1, such that

(1) gi just differs with Ai in B(ρ),
(2) ‖Dygi − Ai‖ < 6d(A,B) for y ∈ R

k,

(3) there exists ρ′ > 0 such that

gi|B(ρ′) = aBi + (1 − a)Ai,

(4) by denoting g = gιm−1 ◦ gιm−2 ◦ · · · ◦ g0, we have gn(y) → 0 as n → ∞
for any y ∈ R

k.

Proof. Let β : [0,+∞) → [0, 1] be a bump function which satisfies

β|[0,1/3] = 0, β|[2/3,+∞) = 1, and β′(x) < 4

for any x ∈ [0,+∞). For any c ∈ [0, 1], denote by

Cc = {Cc
i : Cc

i = cBi + (1 − c)Ai, i = 0, 1, . . . , ιm− 1}
and

Mc = Cc
ιm−1 ◦ Cc

ιm−2 ◦ · · · ◦ Cc
0 .

For any c1, c2 ∈ [0, 1], define

d(Cc1 , Cc2) := sup {‖Cc1
i − Cc2

i ‖ : 0 ≤ i < ιm} .
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Since Mc is contracting for any c ∈ [0, 1), there exists δ(c) > 0 satisfying the
following property: for any C = {C0, C1, . . . , Cιm−1} with every ‖Ci − Cc

i ‖ <
δ(c), i = 0, 1, . . . , ιm− 1, if we let hi : R

k → R
k be the map defined by

hi(x) = β(|x|)Cc
i (x) + (1− β(|x|))Ci(x),

then the differentiable map

H = hιm−1 ◦ hιm−2 ◦ · · · ◦ h0

satisfies Hn(x) → 0 as n → +∞ for any x ∈ R
k. Since [0, a] is closed, we can

find a finite sequence 0 = c0 < c1 < · · · < cs = a such that d(Ccj , Ccj+1) < δ(ci)

for any 0 ≤ j < s. Now we construct {gi}. Let hj
i be defined as in the last

paragraph corresponding Ccj and Ccj+1 , i.e.,

hj
i = β(|x|)Ccj

i (x) + (1 − β(|x|))Ccj+1

i (x)

for any 0 ≤ i < ιm and 0 ≤ j < s. One can check that ‖Dyh
j
i − C

cj
i ‖ < 5δ(cj)

for 0 ≤ i < ιm, 0 ≤ j < s, and y ∈ R
k. Let

Hj = hj
ιm−1 ◦ hj

ιm−2 ◦ · · · ◦ hj
0.

Then we know that Hn
j (x) → 0 as n → +∞ for any x ∈ R

k.

Let λ0 = ρ and h̃0
i = λ0 ◦ h0

i ◦ λ−1
0 id for 0 ≤ i < ιm. Let

H̃0 = h̃0
ιm−1 ◦ h̃0

ιm−2 ◦ · · · ◦ h̃0
0.

Then we can see that the following properties are satisfied:

(a) ‖Dyh̃
0
j − Cc0

i ‖ < 5δ(c0) for 0 ≤ i < ιm and y ∈ R
k,

(b) Hn
0 (x) → 0 as n → +∞ for x ∈ R

k.

Let B(r) = {x ∈ R
k : |x| ≤ r}. Then we can take λ1 ∈ (0, λ0/3) such that

(h̃0
i+j ◦ h̃0

i−1+j ◦ · · · ◦ h0
j)(B(λ1)) ⊂ B(λ0/3)

for 0 ≤ i, j < ιm, where h̃0
j = h̃0

j−ιm if j ≥ ιm. Let h̃1
i = λ1 ◦ h1

i ◦ λ−1
1 id for

0 ≤ i < ιm, and let

H̃1 = h̃1
ιm−1 ◦ h̃1

ιm−2 ◦ · · · ◦ h̃1
0.

One can see that {h̃1
j} and H̃1 have the similar property with {h̃0

j} and H̃0,

respectively. Next we take λ2, {h̃2
i : 0 ≤ i < ιm} and H̃2 inductively, i.e., take

λ2 ∈ (0, λ1/3) such that

(h̃0
i+j ◦ h̃0

i−1+j ◦ · · · ◦ h0
j)(B(λ1)) ⊂ B(λ0/3)

for 0 ≤ i, j < ιm, and then take

h̃2
i = λ2 ◦ h2

i ◦ λ−1
2 id and H̃2 = h̃2

ιm−1 ◦ h̃2
ιm−2 ◦ · · · h̃2

0.

Let λj , {h̃j
i : 0 ≤ i < ιm} and H̃j be defined inductively as above. Let gi be

defined by

gi|Rk\B(λ1) = h̃0
i ; gi|B(λj)\B(λj+1) = h̃j

i
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for j = 1, 2 . . . , s− 2 and gi|B(λs−1) = h̃s
j . It is obvious that gi just differs from

Ai in B(ρ), and there exists ρ′ = λs−1/3 such that gi|B(ρ′) = aBi + (1− a)Ai.
To verify the second condition of Lemma 4.3, one can check that

· Dygi = Ai if y ∈ R
k\B(λ0),

· ‖Dygi−Ai‖ ≤ ‖Dygi−C
cj
i ‖+‖Ccj

i −Ai‖ < 6d(A,B) if y ∈ B(λj)\B(λj+1),
· ‖Dygi −Ai‖ < 6d(A,B) if y ∈ B(λs−1).

Hence we get ‖Dygi −Ai‖ < 6d(A,B) for any y ∈ R
k.

For any x ∈ R
k, one can see that if |x| > λ1, then the orbit of x is operated

by {h̃0
i }, and there exists n0 such that the n0-iterate of x go into the ball B(λ1).

Furthermore, it will be operated by {h̃1
i } till it goes into the ball B(λ2), and

also it will be operated by {h̃2
i } till it goes into B(λ3), etc. Finally, we can see

that after some time, the orbit of x will be operated by {h̃s−1
i }, and then it

will go to 0. This completes the proof of Lemma 4.3. �

Now we will take a perturbation Y of X such that CY (γY ) is not shadow-
able for Yt. By applying Proposition 2.2, we can choose an arbitrarily small
perturbation Y of X such that Y keeps the orbit γ′ unchanged and its Poincaré
map is given by

f̃Yti
(x),ti+1−ti |N̂Yti

(x),r2
= expYti+1

(x) ◦Ψti+1−ti ◦ exp−1
Yti

(x) |Nx(r2)

for some r2 > 0. Since the perturbation can be arbitrarily small, we can keep
the relation γ′ ∼ γ. To simplify the notations, we still use X to denote the
perturbation Y .

Let y1 ∈ W s(γ′) ⋔ Wu(γ) and y2 ∈ Wu(γ′) ⋔ W s(γ). Without loss of
generality, we can assume

y1, y2 ∈ N̂x,r2, fx,ti(y1) ∈ N̂Xti
(x),r2 and f−1

Xtιm−i
(x),tιm−tιm−i

∈ N̂Xtιm−i
(x),r2

for any 0 ≤ i ≤ ιm. Take a close to 1, let Di = aAi + (1 − a)Bi for all
0 ≤ i < ιm. Then we know that Dιm−1 ◦Dιm−2 ◦ · · · ◦D0 has an eigenvalue
λ with modulus close to 1. Without loss of generality, we can assume λ has
multiplicity 1 and the other eigenvalues have modulus less than or equal to |λ|
(otherwise, we take an arbitrarily small perturbation whose weakest eigenvalue
has multiplicity 1). By Lemma 4.3, we can construct a sequence gi which just
differs from Ai in a small ball B(ρ) of 0, and gi = Di in a ball B(ρ′). If we
take ρ small enough, then gn(expx(y1)) → 0 as n → +∞.

Take another perturbation of gi in the ball B(ρ′). We take ρ′′ < ρ′ such that

(gi+j ◦ gi+j−1 ◦ · · · ◦ gi)(B(λ−1ρ′′)) ⊂ B(ρ′)

for all 0 ≤ i, j < ιm, where gi = gi−ιm if i ≥ ιm. Then we take

g̃0(v) = β

( |v|
ρ′′

)

g0(v) +

(

1− β

( |v|
ρ′′

))

D0

|λ| (v)

instead of g0. One can easily check that

‖Dyg̃0 −Dyg0‖ < 5(|λ|−1 − 1)‖D0‖
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for all y ∈ R
k. Hence if we take a close to 1 enough, we have

‖Dy g̃0 −Dyg0‖ < 3d(A,B)

for all y ∈ R
k. Let g̃i = gi for 1 ≤ i < ιm, and g̃ = g̃ιm−1 ◦ g̃ιm−2 ◦ · · · ◦ g̃0.

Then we know that g̃|B(ρ′′/3) = |λ|−1g|B(ρ′′/3). If λ is real, then g̃ has an arc

I located in the eigenspace of λ such g̃2|I is the identity map. If λ is complex,
then g̃ has a disc D located in the two-dimensional eigenspace of λ such that
g̃|D is a rotation. Since the other eigenvalues except λ, λ have modulus less
than |λ|, we can get that g̃n(exp−1

x (y1)) tend to a point in I (if λ is real ) or D
(if λ is complex) as n → ∞.

Under the decomposition NXti
(x) = ∆s(Xti(x)) ⊕∆u(Xti(x)), i = 0, 1, . . . ,

ιm− 1, the linear Poincaré flow Ψt has the following form

Ψti+1−ti |NXti
(x)

= exp−1
Xti+1

(x) ◦fXti
(x),ti+1−ti ◦ expXti

(x) |NXti
(x),r2

=

(

Ai 0
0 Ψti+1−ti |∆u(Xti

(x))

)

.

Take

f̃i =

(

g̃i 0
0 Ψti+1−ti |∆u(Xti

(x))

)

.

From Proposition 3.7, we have ∠ (∆s(Xti(x)),∆
u(Xti(x))) > α. By the con-

struction of g̃i, we know that

‖Dyg̃i −Ai‖ < 9d(A,B) < 9ε =
9αε1

10(1 + α)

for all y ∈ R
k. Finally we obtain

‖Dz f̃i −Dzfi‖ < 9ε1/10

for all z ∈ N̂Xti
(x),r2. If ρ is small enough, we have dC1(fi, f̃i) < ε1. Then we

take a perturbation Y by Proposition 2.2 such that the orbit γ′ is unchanged,
and

expXti+1
(x) ◦f̃i ◦ expXti

(x) : N̂Yti
(x),r2 → N̂Yti+1

(x),1

is just the Poincaré map associated to Y . Let F : N̂x → N̂x be the Poincaré
first return map associated to the periodic orbit γ′ and the vector filed Y . Then
there exists an arc I (or a disc D) such that F 2|I is the identity map (or F |D
is a rotation map). Moreover we know that

Y−t(y1) → γ and Yt(y2) → γ as t → ∞;

Fn(y1) → I (or D) and Fn(y1) → I (or D) as n → ∞.

Hence I (or D) is a subset of CY (γ). By the standard argument, we can find a
constant ε0 such that for any δ, there exists a δ-pseudo orbit which can not be
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ε0-shadowed. One can find such kind of construction in [13] (for more details,
see [13]). This contradicts to the robust shadowability of CY (γ). Hence we get

1

τ

ι
∑

i=1

log
∥

∥

∥
ΨTi−Ti−1 |∆s(XTi−1

(x))

∥

∥

∥
< −η.

Note that the multiples of m also satisfy Lemma 4.2, and we can take m and
N uniformly for both the stable and unstable directions. Similarly, we can get
the second inequality of (2) in Proposition 4.1. This completes the proof of
Proposition 4.1.

5. The proof of the main theorem

In Section 3, we have proved that if CX(γ) is C1 robustly shadowable
and does not contain a non-hyperbolic singularity, then CX(γ) admits a Ψt-
dominated splitting NCX(γ) = ∆s ⊕∆u with dim(∆s) = ind(γ). We will prove
that this invariant splitting is indeed a hyperbolic splitting with respect to
the linear Poincaré flow Ψt. First we recall some results for the dominated
splitting. By the standard argument of dominated splitting, we can get the fol-
lowing proposition which says that the dominated splitting of a closed invariant
set can be extended to its neighborhood.

Proposition 5.1. Let Λ be a closed invariant set of the flow Xt. If Λ contains

no singularity and the linear Poincaré flow Ψt admits a dominated splitting over

Λ, then there exists a neighborhood U of Λ such that the dominated splitting

can be extended to the set
⋂

t∈R
Xt(U).

By the standard argument of dominated splitting, we may assume that the
subbundles ∆s and ∆u are continuous. As usual, let N be the normal bundle
over Λ. Denote by Emb1Λ(∆

s,N ) the set of all bundle maps σ : ∆s → N
satisfying:

(a) σx : ∆s(x) → Nx is a C1 map for any x ∈ Λ,
(b) Dvnσxn → Dvσx for any sequence vn(∈ ∆s(xn)) 7→ v ∈ (∆s(x)).

Similarly, we can define Emb1Λ(∆
u,N ). Let ∆s(x, δ) be the δ-ball in ∆s(x),

and let ∆u(x, δ) be the δ-ball in ∆u(x).

Proposition 5.2. Let Λ be a closed invariant set of the flow Xt. If Λ admits

a l-dominated splitting ∆s ⊕ ∆u with respect to the linear Poincaré flow Ψt,

then there exist a bundle map σs ∈ Emb1Λ(∆
s,N ) and a bundle map σu ∈

Emb1Λ(∆
u,N ) such that for any x ∈ Λ,

(1) Tx expx σ
s
x(∆

s(x)) = ∆s(x) and Tx expx σ
u
x(∆

u(x)) = ∆u(x);
(2) for any 0 < δ0 < 1, there exists 0 < δ1 < δ0 such that

fx,t(W
cs
δ1 (x)) ⊂ W cs

δ0 (Xt(x)) and f−1
x,t (W

cu
δ1 (Xt(x))) ⊂ W cu

δ0 (x),

for 0 < t ≤ l, where

W cs
δ (x) = expx(σ

s
x(∆

s(x, δ))) and W cu
δ (x) = expx(σ

u
x(∆

u(x, δ))).
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We call W cs
δ (x) and W cu

δ (x) the local center stable and local center unstable

manifolds of x, respectively.

Lemma 5.3. Let Λ be a closed invariant set of the flow Xt, and assume Λ
admits a l-dominated splitting for the linear Poincaré flow Ψt. Then for any

η > 0, there exists r > 0 satisfies the following properties:

(1) if a point x ∈ Λ and a sequence 0 = t0 < t1 < · · · with the property

ti+1 − ti ∈ [l, 2l) for i ≥ 0 satisfy

1

tk

k−1
∑

i=0

log
∥

∥

∥
Ψti+1−ti |∆s(Xti

(x))

∥

∥

∥
< −η,

for any k > 0, then

d(Xt(y), orb(x)) → 0 as t → +∞

for any y ∈ W cs
r (x), or equivalently, W cs

r (x) ⊂ W s(orb(x)).
(2) if a point x ∈ Λ and a sequence 0 = t0 > t1 > · · · with the property

ti − ti+1 ∈ [l, 2l) for i ≥ 0 satisfy

1

−tk

k−1
∑

i=0

log
∥

∥

∥
Ψti+1−ti |∆u(Xti

(x))

∥

∥

∥
< −η,

for any k > 0, then

d(Xt(y), orb(x)) → 0 as t → −∞

for any y ∈ W cu
r (x), or equivalently, W cu

r (x) ⊂ Wu(orb(x)).

Proof. We just prove (1). By reversing the vector field X , (2) can be obtained
from (1). Let λ = e−lη, and take a constant λ1 ∈ (λ, 1). Fix a constant
0 < δ0 < 1 such that

‖Dyσ
s
x‖ <

√

λ1/λ and ‖Dy(σ
s
x)

−1‖ <
√

λ1/λ

for any x ∈ Λ and y ∈ ∆s(x, δ0). By Proposition 5.2, there exists 0 < δ1 < δ0
such that

fx,t(W
cs
δ1 (x)) ⊂ W cs

δ0 (Xt(x))

for x ∈ Λ and 0 ≤ t ≤ 2l. Since Λ is compact, we can choose 0 < r < δ1 such
that

‖Dyfx,t −Ψt|Nx‖ < (
√

λ1/λ− 1)‖Ψt|Nx‖
for any t ∈ [l, 2l], x ∈ Λ and y ∈ N̂x,r. Let x ∈ Λ, and let 0 = t0 < t1 < · · · be
a sequence given in (1). Denote by xn = Xtn(x) for all n ≥ 0. Then xn+1 =
Xtn+1−tn(xn). Given y ∈ W cs

r (x), let y0 = y and yn+1 = fxn,tn+1−tn(yn). To
prove (1), it suffices to show that d(xn, yn) → 0 as n → +∞.
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Figure 3. Contracting on ∆s implies contracting on W cs

For each n ≥ 0, consider a map Fn : ∆s(xn, r) → ∆s(xn+1) which is defined
via the following diagram

∆s(xn, r)
σs
xn−−−−→ Nxn





y

Fn





y

Dxnfxn,tn+1−tn

∆s(xn+1, r)
(σs

xn+1
)−1

−−−−−−−→ Nxn+1

or

Fn =
(

σs
xn+1

|∆s(xn+1,δ0)

)−1

◦Dxnfxn,tn+1−tn ◦ σs
xn
|∆s(xn,r).

What we are going to prove is that the contracting property on ∆s implies
the contracting property on W cs (see Figure 3). Since r < δ1, each Fn is well
defined. Then we can see that

‖DyF0‖ < (λ1/λ) · ‖Ψt1−t0 |∆s(x0)‖ < λ1

for all y ∈ ∆s(x0, r). Hence we have

F0(∆
s(x0, r)) ⊂ ∆s(x1, λ1r).

Because y ∈ W cs
r (x), there is v ∈ ∆s(x, r) such that y = expx(σ

s
x(v)). Thus we

get

y1 = fx,t1(y) = fx,t1(expx(σ
s
x(v)))

= expx1
(Ψt1(σ

s
x(v))) = expx1

(σs
x1
(F0(v)))

∈ expx1
(σs

x1
(F0(∆

s(x, r))) ⊂ expx1
(σs

x1
(∆s(x1, λ1r))).

This means that y1 ∈ W cs
λ1r

(x). Similarly, we can check that

‖Dy(F1 ◦ F0)‖ < (λ1/λ)
2‖Ψt1−t0 |∆s(x0)‖ · ‖Ψt2−t1 |∆s(x1)‖ < λ2

1
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for all y ∈ ∆s(x0, r). This implies

(F1 ◦ F0)(∆
s(x, r) ⊂ ∆s(x2, λ

2
1r)

and so y2 ∈ W cs
λ2
1r
(x2). Inductively, we can prove that

‖Dy(Fn ◦ Fn−1 ◦ · · · ◦ F0)‖ < λn
1

and

(Fn ◦ Fn−1 ◦ · · · ◦ F0) (∆
s(x, r)) ⊂ ∆s(xn, λ

n
1 r)

for any y ∈ ∆s(x, r). This means that yn ∈ W cs
λn
1 r
(xn), and so d(xn, yn) → 0 as

n → +∞. This completes the proof of Lemma 5.3. �

If the dominated splitting NCX(γ) = ∆s ⊕∆u is not a hyperbolic splitting
for Ψt, then either ∆s is not Ψt-contracting or ∆u is not Ψt-expanding. We
assume that ∆s is not Ψt-contracting.

First of all, we have the following lemma.

Lemma 5.4. Let Λ be a compact invariant set of the flow Xt, and assume Λ
admits a dominated splitting N = ∆s ⊕ ∆u for the linear Poincaré flow Ψt.

If the subbundle ∆s is not contracting for Ψt, then there exists a point b ∈ Λ
(which is called a “bad” point) such that

∥

∥Ψt|∆s(b)

∥

∥ ≥ 1

for all t ≥ 0.

Proof. Suppose not. Then for any x ∈ Λ, there is tx > 0 such that ‖Ψtx |∆s(x)‖
= λx < 1. For each x ∈ Λ, take δx such that if y ∈ B(x, δx) ∩ Λ, then
‖Ψtx |∆s(y)‖ <

√
λx. Since Λ is compact, we can choose a finite set {x1, x2, . . . ,

xk} such that Λ ⊂ ⋂k
i=1 B(xi, δxi). Let K = max{txi : 1 ≤ i ≤ k}, λ =

(max{λxi : 1 ≤ i ≤ k})1/2K , and C = sup{‖Ψt|∆s(x)‖ : 0 ≤ t ≤ K,x ∈
Λ} · λ−K . Given any x ∈ Λ and t > 0, take 0 < t1 ≤ K such that

‖Ψt1|∆s(x)‖ < λK ≤ λt1 .

Then we can choose t2 such that 0 < t2 − t1 ≤ K and
∥

∥

∥
Ψt2−t1 |∆s(Xt1 (x))

∥

∥

∥
< λK ≤ λt2−t1 .

Hence we have ‖Ψt2 |∆s(x)‖ < λt2 . Similarly we can take 0 < t1 < t2 < · · · <
tl < t with t− tl < K such that

∥

∥

∥
Ψti−ti−1 |∆s(Xti−1

(x))

∥

∥

∥
< λk < λti−ti−1 .

Finally we can show that ‖Ψt|∆s(x)‖ < Cλt. This contradicts to the assumption
which ∆s is not Ψt-contracting. �
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Lemma 5.5. Let γ′ be a hyperbolic closed orbit with period τ , and let T and

η be positive constants. Suppose

1

t

(

log
∥

∥Ψt|∆s(x)

∥

∥− logm
(

Ψt|∆u(x)

))

< −2η

for x ∈ γ′ and t ≥ T . Then for any x ∈ γ′ and a partition 0 = T0 < T1 <
· · · < Tι = τ of [0, τ ] with T ≤ Ti−Ti−1 < 2T for i = 1, 2, . . . , ι, if an extended

partition {Ti}i∈Z of {Ti}0≤i≤ι with Ti+kι = Ti + kτ for any integer i, k satisfy

1

τ

ι
∑

i=1

log
∥

∥

∥
ΨTi−Ti−1 |∆s(XTi−1

(x))

∥

∥

∥
< −η

and
1

τ

ι
∑

i=1

logm
(

ΨTi−Ti−1 |∆u(XTi−1
(x))

)

> η,

then there exists an integer 0 ≤ i0 < ι such that

1

Ti0+k − Ti0

k
∑

j=1

log

∥

∥

∥

∥

ΨTi0+j−Ti0+j−1 |∆s
(

XTi0+j−1
(x)

)

∥

∥

∥

∥

≤ −η

and

1

Ti0 − Ti0−k

k
∑

j=1

logm

(

ΨTi0−j+1−Ti0−j |∆u
(

XTi0−j
(x)

)

)

≥ η

for any k ≥ 1.

Proof. For each k ∈ Z, define S(Tk) by

S(Tk) =



























k−1
∑

j=0

log
∥

∥

∥
ΨTj+1−Tj |∆s(XTj

(x))

∥

∥

∥
if k > 0,

−
−1
∑

j=−k

log
∥

∥

∥
ΨTj+1−Tj |∆s(XTj

(x))

∥

∥

∥
if k < 0,

0 if k = 0.

Then we know that

S(Tι) < −ηTι and S(Tl+i) = S(Tl) + S(Ti)

for any i ∈ Z. Hence we get

S(Tnι+i)− S(Ti) < −η(Tnι+i − Ti)

for any i ∈ Z. First we prove that the set

A := {j0 ∈ Z : S(Tj0+k)− S(Tj0) < −η(Tj0+k − Tj0) for k ≥ 0}
is not empty. Suppose not. Then for j ≥ 0, there exists kj > 0 such that

S(Tj+kj )− S(Tj) ≥ −η(Tj+kj − Tj).

Let 0 < k0 < k1 < · · · be a sequence such that

S(Tki)− S(Tki−1) ≥ −η(Tki − Tki−1)
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for any i > 0. Then there exists 0 < j < i such that ki − kj is a multiple of ι.
The choice of the sequence means that

S(Tki)− S(Tkj ) ≥ −η(Tki − Tkj ).

This contradicts to our assumption.
Similarly we can define S̃(Tk) by

S̃(Tk) = −
k−1
∑

j=0

logm
(

ΨTi−Ti−1 |∆u(XTi−1
(x))

)

,

S̃(T−k) =

0
∑

j=−k+1

logm
(

ΨTi−Ti−1 |∆u(XTi−1
(x))

)

for any k > 0. Then we can see that

S̃(Tι) < −ηTι and S̃(Tl+i) = S̃(Tl) + S̃(Ti)

for any integer i. Also we can prove that the set

B := {j0 ∈ Z : S̃(Tj0)− S̃(Tj0−k) < −η(Tj0 − Tj0−k) for k ≥ 0}
is not empty. It is clear that if a ∈ A, then ±ι + a ∈ A, and if b ∈ B, then
±ι+ b ∈ B.

Now we prove that A ∩ B ∩ [0, ι) is not empty. Suppose A ∩B ∩ [0, ι) = ∅.
Then there are a ∈ A and b ∈ B such that b < a and (b, a)∩ (A∪B) = ∅. Since
a− 1 /∈ A, we can see that

S(Ta)− S(Ta−1) ≥ −η(Ta − Ta−1).

From

1

Ta − Ta−1

(

log
∥

∥

∥
Ψt|∆s(XTa−1

(x))

∥

∥

∥
− logm

(

Ψt|∆u(XTa−1
(x))

))

< −2η,

we get

S̃(Ta)− S̃(Ta−1) < −η(Ta − Ta−1).

Similarly if a− 2 /∈ A, we get

S(Ta)− S(Ta−2) ≥ −η(Ta − Ta−2).

If it does not hold, then we have

S(Ta)− S(Ta−2) < −η(Ta − Ta−2)

and

S(Ta−1)− S(Ta−2) < −η(Ta−1 − Ta−2).

These two inequalities and a ∈ A imply a− 2 ∈ A. From

log
∥

∥

∥
ΨTa−Ta−1 |∆s(XTa−1

(x))

∥

∥

∥
− logm

(

ΨTa−Ta−1 |∆u(XTa−1(x))

)

Ta − Ta−1
< −2η
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and

log
∥

∥

∥
ΨTa−1−Ta−2 |∆s(XTa−2

(x))

∥

∥

∥
− logm

(

ΨTa−1−Ta−2 |∆u(XTa−1(x))

)

Ta−1 − Ta−2
< −2η,

we have

S̃(Ta)− S̃(Ta−2) < −η(Ta − Ta−2).

Inductively we can show that for any i ∈ [b, a), we have

S̃(Ta)− S̃(Ti) < −η(Ta − Ti).

These two inequalities and the fact b ∈ B imply a ∈ B, which lead to a
contradiction to the assumption A ∩ B = ∅. Consequently we can choose an
integer i0 ∈ A∩B∩[0, ι) so that the integer i0 satisfies the conclusion of Lemma
5.5. This completes the proof of Lemma 5.5. �

We will say that the point XTi0
(x) obtained in Lemma 5.5 is a “good”

hyperbolic periodic point contained in the hyperbolic closed orbit γ′. If δ(:= r)
is a constant given by Lemma 5.3 with respect to the dominated splitting
∆s ⊕∆u over CX(γ), then we can see that

W cs
δ (XTi0

(x)) ⊂ W s(γ′) and W cu
δ (XTi0

(x)) ⊂ Wu(γ′).

Now we glue the orbit of “bad” point b obtained in Lemma 5.4 and the
hyperbolic closed orbit γ′ to get a “quasi hyperbolic” pseudo orbit. Let T , η,
and T̃ be constants as in Proposition 4.1. Let x0 = XT0(x). Then we have the
following lemma.

Lemma 5.6. Let X ∈ X 1(M), and let γ be a hyperbolic closed orbit of Xt.

Assume CX(γ) is C1 robustly shadowable and has no hyperbolic singularity. Let

NCX(γ) = ∆s ⊕ ∆u be the dominated splitting of the linear Poincaré flow Ψt

with dim∆s = ind(γ). If the subbundle ∆s is not Ψt-contracting, then for any

constants δ > 0 and 0 < η1 < η2 < η, there exists a δ-pseudo orbit {(xi, ti)}n−1
i=0

in CX(γ) such that

(1) x0 is a “good” hyperbolic periodic point of a hyperbolic closed orbit γ′

which is homoclinically related to γ,
(2) 5T/4 < ti < 7T/4 for 0 ≤ i ≤ n− 1,
(3) Xtn−1(x0) = x0,

(4) by letting Tk = t0 + · · ·+ tk−1 for all 1 ≤ k ≤ n, we have

1

Tk

k−1
∑

i=0

log
∥

∥Ψti |∆s(xi)

∥

∥ < −η1,

1

Tn − Tn−k

k
∑

i=1

logm
(

Ψtn−i|∆u(xn−i)

)

> η1,
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and

1

Tn

n−1
∑

i=0

log
∥

∥Ψti |∆s(xi)

∥

∥ > −η2.

where 1 ≤ k ≤ n.

Proof. Since ∆s is not contracting for Ψt, by Lemma 5.4, there exists a “bad”
point b ∈ CX(γ) such that ‖Ψt|∆s(b)‖ ≥ 1 for all t ≥ 0. Take and fix constants
δ > 0 and 0 < η1 < η2 < η, and choose a constant 0 < ε < δ so that
d(x, y) < ε implies d(Xt(x), Xt(y)) < δ for any 0 ≤ t ≤ 2T . Since CX(γ)
equals to the homoclinic class of γ, there exists a hyperbolic closed orbit γ′(∼ γ)
with arbitrarily large period τ (here we just consider the non-trivial case) such
that CX(γ) ⊂ B(γ′, ε). We can assume the period τ is big enough so that
5
4T < τ

ι < 7
4T , where ι is the integer part of τ

3T/2 . Now we take x ∈ γ such

that d(x, b) < ε < δ, and divide [0, τ ] into ι part

0 < τ/ι < 2τ/ι < · · · < (ι− 1)τ/ι < τ.

From Lemma 5.5, we can get 0 ≤ i0 < τ such that

1

kτ/ι

k−1
∑

j=0

log
∥

∥

∥
Ψτ/ι|∆s(X(j+i0)τ/ι(x))

∥

∥

∥
≤ −η

and

1

kτ/ι

k
∑

j=1

logm
(

Ψτ/ι|∆u(X(i0−j)τ/ι(x))

)

≥ η

for any k ≥ 1. Choose an integer s > 0 (we will fix s in the future), and take
xi = X(i0+i)τ/k(x) and ti = τ/ι for 0 ≤ i < sι − i0. We know that x0 is a
“good” periodic point of γ′ and Xτ/ι(xsι−i0−1) = x. Now for j ≥ 0, let

xsι−i0+j = X3jT/2(b) and tsι−i0+j = 3T/2.

By the property of the “bad” point b, we can choose L > 0 such that

1

t0 + · · ·+ tsι−i0+L−1

sι−i0+L−1
∑

i=0

log
∥

∥Ψti
|∆s(xi)

∥

∥ ≥ −η1 + η2
2

and

1

t0 + · · ·+ tsι−i0+l−1

sι−i0+l−1
∑

i=0

log
∥

∥Ψti
|∆s(xi)

∥

∥ < −η1 + η2
2

for all 0 ≤ l < L. Then we can see that L is increasing as s is increasing.
Since CX(γ) ⊂ B(γ′, ε), we can find 0 ≤ j0 < ι and a point t′ ∈ [j0τ/ι, (j0 +

1)τ/ι) such that

d
(

X3T/2(xsι−i0+L−1), Xt′(x)
)

< ε.

Since (j0 + 1)τ/ι− t′ < 2T , we have

d(X3T/2+(j0+1)τ/ι−t′(xsι−i0+L−1), X(j0+1)τ/ι(x)) < δ.
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Figure 4. The figure of the sum
∑k−1

i=0 log ‖Ψti |∆s(xi)‖

To construct a δ-pseudo orbit, we still let xsι−i0+L−1 = X3(L−1)T/2(b), but

change tsι−i0+L−1 to 3T/2 + (j0 + 1)τ/ι − t′. Moreover we let xsι−i0+L+i =
X(j0+1+i)τ/ι(x)) and tsι−i0+L = τ/ι for any 0 ≤ i < 2ι− j0 + i0. Put

n = sι− i0 + L+ 2ι− j0 + i0 = (s+ 2)ι+ L− j0.

Then we can see that {(xi, ti)}n−1
i=0 is a δ-pseudo orbit in CX(γ) andXtn−1

(xn−1)

= x0. Note that the constant tsι−i0+L−1 may not belong to (5T/4, 7T/4). We
modify the δ-pseudo orbit {(xi, ti)}n−1

i=0 so that the constant tsι−i0+L−1 belongs
to (5T/4, 7T/4). We let xi = xi and ti = ti for 0 ≤ i < sι − i0 + L − 7 and
sι− i0 + L ≤ i < n. By letting

xsι−i0+L−7 = xsι−i0+L−7,

tsι−i0+L−7 = 3T/2 + ((j0 + 1)τ/ι− t′)/7,

xsι−i0+L−7+i = Xi(3T/2+((j0+1)τ/ι−t′)/7)(xsι−i0+L−7),

tsι−i0+L−7+i = 3T/2 + ((j0 + 1)τ/ι− t′)/7,

for 1 ≤ i ≤ 6, we can see that ti ∈ (5T/4, 7T/4) for every 0 ≤ i < n.
Now we will check that if τ and s are large enough, then {(xi, ti)}n−1

i=0 is a
desired δ-pseudo orbit in CX(γ).

Let K = sup{‖Ψt|Nx‖ : x ∈ CX(γ),−2T ≤ t ≤ 2T }. To simplify the
notation, we change tsι−i0+L−1 back to 3T/2. Then we know

∣

∣

∣

∣

∣

∣

log

∥

∥

∥
Ψtsι−i0+L−8+i

|∆s(xsι−i0+L−8+i)

∥

∥

∥

∥

∥

∥
Ψtsι−i0+L−8+i|∆s(xsι−i0+L−8+i)

∥

∥

∥

∣

∣

∣

∣

∣

∣

≤ 2 logK
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and
∣

∣

∣

∣

∣

∣

log
m
(

Ψtsι−i0+L−8+i
|∆u(xsι−i0+L−8+i)

)

m
(

Ψtsι−i0+L−8+i |∆u(xsι−i0+L−8+i)

)

∣

∣

∣

∣

∣

∣

≤ 2 logK

for all 1 ≤ i ≤ 7. If we let n1 = sι− i0 + L− 7, by the choice of L, we have

1

Tk

k−1
∑

i=0

log ‖Ψti |∆s(xi)‖ < −η1 + η2
2

for 0 < k ≤ n1. Moreover we get

1

Tk

k−1
∑

i=0

log
∥

∥Ψti |∆s(xi)

∥

∥ <
−Tn1 · η1+η2

2 + (k − n1) logK

Tk

for n1 < k < n. Since n− n1 = 2ι− j0 + i0 + 7 < 3ι+ 8 we obtain

Tk − Tn1 < (3ι+ 8)2T and (k − n1) logK < (3ι+ 8) logK

for any n1 < k < n. So if s is large enough, then we have

1

Tk

k−1
∑

i=0

log ‖Ψti |∆s(xi)‖ < −η1.

By the choice of L, we get

1

t0 + · · ·+ tn1+6

n1+6
∑

i=0

log
∥

∥Ψti |∆s(xi)

∥

∥ ≥ −η1 + η2
2

,

and so we obtain
n1
∑

i=0

log
∥

∥Ψti |∆s(xi)

∥

∥ ≥ −η1 + η2
2

(t0 + · · ·+ tn1+6)− 7 logK

> −η1 + η2
2

Tn1 − 7 logK.

Then we have

1

Tn

n1
∑

i=0

log
∥

∥Ψti |∆s(xi)

∥

∥ >
− η1+η2

2 Tn1 − 7 logK − (n− n1) logK

Tn
.

If s is large enough, we know

1

Tn

n−1
∑

i=0

log
∥

∥Ψti |∆s(xi)

∥

∥ > −η2.

Let n2 = sι− i0 + L. By the choice of x0 and xn−1, we have

1

Tn − Tn−k

k
∑

i=1

logm(Ψtn−i |∆u(xn−i)) > η > η1
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for any 1 ≤ k ≤ n− n2. By the choice of L, we get

1

tn2−k + · · ·+ tn2−1

k
∑

i=1

log
∥

∥

∥
Ψtn2−i

|∆s(xn2−i)

∥

∥

∥
> −η1 + η2

2
,

and so

1

tn2−k + · · ·+ tn2−1

k
∑

i=1

logm
(

Ψtn2−i
|∆u(xn2−i)

)

> 2η − η1 + η2
2

> η

for all 1 ≤ k ≤ n2. Hence we have

k
∑

i=1

logm
(

Ψtn−i|∆u(xn−i)

)

> η(Tn − Tn2) + η(tn−k + · · ·+ tn2−1)− 14 logK

> η(Tn − Tn−k − 2T )− 14 logK

for all n− n2 < k < n. Consequently we obtain

1

Tn − Tn−k

k
∑

i=1

logm
(

Ψtn−i|∆u(xn−i)

)

>
η(Tn − Tn−k − 2T )− 14 logK

Tn − Tn−k

for all n − n2 < k < n. We know that n − n2 > ι and Tn − Tn−k > ιT if
k > n− n2. If we choose τ large enough, then we get

1

Tn − Tn−k

k
∑

i=1

logm
(

Ψtn−i |∆u(xn−i)

)

> η1

for all n− n2 < k < n. This completes the proof of Lemma 5.6. �

By the shadowability of the above δ-pseudo orbit {(xi, ti)}, we can take a
point z ∈ M and an increasing continuous map h : R → R satisfying

d(Xt−Ti(xi), Xh(t)(z)) < ε

for all t ∈ [Ti, Ti+1). Lemma 5.8 tells us that if ε is small enough, we may
assume 9T/8 < h(Ti+1)−h(Ti) < 15T/8. The idea of the proofs of the following
two lemmas comes from [8].

Lemma 5.7. Let X be a C1 vector filed, and let Λ be a closed invariant set con-

taining no singularity. Then there exist a neighborhood U of Λ and a constant

T0 > 0 which satisfy the following properties:

(1) for 0 < ε < T0, there is δ > 0 such that for any x ∈ U and 0 ≤ s, t ≤ T0,

d(Xs(x), Xt(x)) < δ implies |s− t| < ε,
(2) for T ∈ (0, T0), there is ε > 0 such that X[0,t](x) ⊂ B(x, ε) implies

t ∈ [0, T ] for any x ∈ U .

Proof. Take a neighborhood U0 of Λ such that the closure of U0 contains no
singularity. Take T0 > 0 such that Xt(x) 6= x for any 0 < t ≤ T0. Take a
neighborhood U of Λ such that Xt(x) ∈ U0 for any x ∈ U and 0 < t ≤ T0. We
will prove that U and T0 satisfy the above lemma.
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If (1) is false, then we can take ε ∈ (0, T0), xn ∈ U , and tn, sn ∈ [0, T0] such
that

d(Xsn(xn), Xtn(xn)) < 1/n and |sn − tn| ≥ ε

for each n ≥ 0. Without loss of generality, we can assume xn → x ∈ U ,
sn → s ∈ [0, T0] and tn → t ∈ [0, T0]. Then we have Xs(x) = Xt(x) and
ε < |s− t| ≤ T0. This is a contradiction to the choice of T0.

If (2) is false, then there is T ∈ (0, T0) such that for any n > 0, there
exist xn ∈ U and tn > T satisfying X[0,tn](xn) ⊂ B(xn, 1/n). Without loss
of generality, we can assume xn → x. Then we see that XT (x) = x, which
contradicts to the choice of T0. �

Lemma 5.8. Let X be a C1 vector filed, and let Λ be a closed invariant set

containing no singularity. Let U and T0 be constants given in the above lemma,

and take a neighborhood V of Λ such that Xt(x) ∈ U for any x ∈ V and

0 ≤ t ≤ T0. Then for any ε ∈ (0, 1) and T1 ∈ (0, T0], there is ε′ > 0 such

that for any x, y ∈ V , if an increasing continuous map g : [0, τ ] → R satisfies

g(0) = 0 and d(Xt(x), Xg(t)(y)) ≤ ε′ for all t ∈ [0, T1], then |g(T1)−T1| ≤ εT1.

Proof. Let ε > 0 and T1 ∈ (0, T0] be given. Then there is γ > 0 such that
X[0,t](x) ⊂ B(x, γ) implies t ≤ εT1 for any x ∈ U . Take η ∈ (0, εT1) such

that d(x,Xt(x)) < γ/3 for all x ∈ U and t ∈ [0, η]. Choose λ > 0 such that
for any x ∈ U , d(Xs(x), Xt(x)) < λ implies |s − t| < η. Take ε′ > 0 such
that d(x, y) ≤ ε′ implies d(Xt(x), Xt(y)) ≤ min{λ/2, γ/3} for any x, y ∈ U and
t ∈ [0, T1].

Now we prove that ε′ satisfies the lemma. Consider x, y ∈ V and an increas-
ing continuous map g : [0, T1] → R such that g(0) = 0 and d(Xt(x), Xg(t)(y)) ≤
ε′ for all t ∈ [0, T1]. Since d(x, y) ≤ ε′, we have d(XT1(x), XT1(y)) ≤ γ/3. If
g(T1) < T1, we get

d(XT1(y
′), Xg(T1)(y)) ≤ d(XT1(x), Xg(T1)(y)) + d(XT1(x), XT1(y)) ≤ γ.

Hence T1 − g(T1) ≤ εT1. If g(T1) > T1, then, by letting S = g−1(T1), we have
S < T1. Therefore we obtain

d(XT1(x), XS(x)) ≤ d(XT1(x), XT1(y)) + d(XS(x), XT (y)) ≤ λ/2 + ε′ ≤ λ.

So we have T1 − S < η and d(Xg−1(t)(x), XT1 (x)) < γ/3 for all T1 < t < g(T1).
Moreover we get

d(Xg(T1)(y), Xt(y)) ≤ d(Xg(T1)(y), XT1(x)) + d(XT1(x), Xg−1(t)(x))

+ d(Xg−1(t)(x), Xt(y)) < γ/3 + γ/3 + γ/3 = γ

for all t ∈ [T1, g(T1)]. Consequently we have g(T1)−T1 < εT1, and so completes
the proof. �

Let γ be a hyperbolic closed orbit. Assume CX(γ) is C1 robustly shadowable
and has no non-hyperbolic singularity. LetNCX(γ) = ∆s⊕∆u be the dominated
splitting of Ψt which is obtained from Proposition 3.8. By Proposition 5.1, we
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know that the dominated splitting ∆s⊕∆u can be extended to a neighborhood
U0 of CX(γ). Now we let Λ =

⋂

t∈R
Xt(U0). To simplify notations, we also

use ∆s ⊕∆u to denote the extended dominated splitting, and assume that the
inequality

1

t

(

log
∥

∥Ψt|∆s(x)

∥

∥− logm
(

Ψt|∆u(x)

))

< −2η

is true for any x ∈ Λ and t ≥ T . By the robust shadowability of CX(γ), we get
the following lemma from Lemma 5.6 and Lemma 5.8.

Lemma 5.9. If the subbundle ∆s is not contracting for Ψt, then for any ε > 0,
any neighborhood U of CX(γ) and any constants 0 < η1 < η2 < η, there exists

a point z ∈ U such that

(1) orb(z) ⊂ U ,

(2) there exist a hyperbolic closed orbit γ′(∼ γ) and a “good” hyperbolic

periodic point q ∈ γ′ such that d(q, z) < ε,
(3) there exist positive numbers 0 = T0 < T1 < · · · < Tn with every 9T/8 <

Ti+1 − Ti < 15T/8 such that

1

Tk

k−1
∑

i=0

log
∥

∥

∥
ΨTi+1−Ti |∆s(XTi

(x))

∥

∥

∥
< −η1,

1

Tn − Tn−k

k
∑

i=1

logm
(

ΨTn−i+1−Tn−i |∆u(XTn−i
(x))

)

> η1,

1

Tn

n−1
∑

i=0

log
∥

∥

∥
ΨTi+1−Ti |∆s(XTi

(x))

∥

∥

∥
> −η2

for all 1 ≤ k ≤ n,
(4) d(z,XTn(z)) < ε.

Let Λ ⊂ MX be a closed invariant set of Xt that has a continuous Ψt-
invariant splitting NΛ = ∆s ⊕∆u with dim∆s = p, 1 ≤ p ≤ dimM − 2. For
any two constants T > 0 and η > 0, an orbit arc (x, t) = X[0,t](x) is said
to be an (η, T, p)-quasi hyperbolic orbit arc of Xt with respect to the splitting
∆s⊕∆u if [0, t] has a partition 0 = T0 < T1 < · · · < Tl with T < Ti−Ti−1 < 2T
satisfying:

· 1
Tk

∑k
j=1 log

∥

∥

∥
ΨTj−Tj−1 |∆s(XTj−1

(x))

∥

∥

∥
≤ −η,

· 1
Tl−Tk−1

∑l
j=k logm

(

ΨTj−Tj−1 |∆u(XTj−1
(x))

)

≥ η,

· log
∥

∥

∥
ΨTk−Tk−1

|∆s(XTk−1
(x))

∥

∥

∥
− logm

(

ΨTk−Tk−1
|∆u(XTk−1

(x))

)

≤ −2η

for k = 1, 2, . . . , l.

The most important property of quasi hyperbolic orbit arc is that it can
be shadowed by a hyperbolic periodic point if two end points of that quasi
hyperbolic orbit arc are sufficiently close. The proof of the following proposition
can be found in [10].
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Proposition 5.10. Let X be a C1 vector field, and let Λ be a closed invariant

set containing no singularity. Assume there exists a continuous invariant split-

ting NΛ = ∆s⊕∆u with dim∆s = p, 1 ≤ p ≤ dimM − 2. Then for any η > 0,
T > 0 and ε > 0, there exists ζ > 0 such that if (x, τ) is a (η, T, p)-quasi hyper-
bolic orbit arc of Xt with respect to the splitting ∆s ⊕∆u and d(Xτ (x), x) < ζ,
then there exist a hyperbolic periodic point y ∈ M and an orientation-preserving

homeomorphism g : [0, τ ] → R with g(0) = 0 such that d(Xg(t)(y), Xt(x)) < ε
for any t ∈ [0, τ ] and Xg(τ)(y) = y.

By applying the above proposition to the (η1, T )-quasi hyperbolic orbit arc
obtained in Lemma 5.9, we get the following proposition.

Proposition 5.11. If the subbundle ∆s is not contracting for Ψt, then for any

ε > 0, any neighborhood U of CX(γ) and any constants 0 < η1 < η2 < η, there
exists a hyperbolic periodic point z ∈ U such that

(1) orb(z) ⊂ U ,

(2) there exist a hyperbolic closed orbit γ′(∼ γ) and a “good” hyperbolic

periodic point p ∈ γ′ such that d(z, p) < ε,
(3) there are positive numbers 0 = T0 < T1 < · · · < Tn with T < Ti+1−Ti <

2T such that

1

Tk

k−1
∑

i=0

log
∥

∥

∥
ΨTi+1−Ti |∆s(XTi

(z))

∥

∥

∥
< −η1,

1

Tn − Tn−k

k
∑

i=1

logm
(

ΨTn−i+1−Tn−i |∆u(XTn−i
(z))

)

> η1,

1

Tn

n−1
∑

i=0

log
∥

∥

∥
ΨTi+1−Ti |∆s(XTi

(z))

∥

∥

∥
> −η2

for all 1 ≤ k ≤ n,
(4) XTn(z) = z.

It is easy to see that z is also a “good” hyperbolic periodic point associated
to the constants η1 and T .

Now are going to complete the proof of our main theorem.

End of the proof of Main Theorem

Fix constants 0 < η1 < η2 < η, and let W cs
δ (x) and W cu

δ (x) be the local
center stable and local center unstable manifolds of x associated to the dom-
inated splitting ∆s ⊕∆u (on the extended set Λ), respectively. Let r > 0 be
the constant given in Lemma 5.3 associated to η1 and T . As in the case of
Poincaré map, we can define a holonomy map hy,x : N̂y,r → N̂x,1 such that

hy,x(z) is the unique point of the intersection orb(z)∩ N̂x,1 if x, y ∈ Λ are close
enough. For the concept of holonomy maps, see Section 2.2 in [1]. Note that
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the holonomy map acts on the manifold as the linear Poincaré flow acts on
the normal bundle. In particular, hy,x(z) and z are in the same orbit of Xt.
Moreover, if y ∈ orb(x) with Xt(x) = y, then hy,x = fy,t, where fy,t is the
Poincaré map mentioned in Section 2. It is obvious that if y → x, then

hy,xW
cs
r (y) → W cs

r (x) and hy,xW
cu
r (y) → W cu

r (x).

Since Λ is compact, we can take a constant ε > 0 such that if d(x, y) < ε, then

hy,xW
cs
r (y) ∩W cu

r (x) 6= ∅ and hy,xW
cu
r (y) ∩W cs

r (x) 6= ∅.
By Proposition 5.11, we can take a hyperbolic closed orbit γ′(∼ γ), a “good”
hyperbolic periodic point p ∈ γ′ and another hyperbolic “good” periodic point
x which is ε close to p. By applying Lemma 5.3, we know

W s(orb(x)) ∩Wu(γ′) 6= ∅ and Wu(orb(x)) ∩W s(γ′) 6= ∅.
Hence we have γ′ ∼ orb(x) ∼ γ, and so orb(x) ⊂ HX(γ) = CX(γ). In the
construction of the pseudo orbit in Lemma 5.6, we can take L to be arbitrarily
large. Hence we may assume the period of x is greater than T̃ . However the
following inequality

1

Tn

n−1
∑

i=0

log
∥

∥

∥
ΨTi+1−Ti |∆s(XTi

(x))

∥

∥

∥
> −η2.

contradicts to Proposition 4.1. This completes the proof of the main theorem.
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[2] C. Bonatti, N. Gourmelon, and T. Vivier, Perturbations of the derivative along periodic

orbits, Ergodic Theory Dynam. Systems 26 (2006), no. 5, 1307–1337.
[3] C. I. Doering, Persistently transitive vector fields on three-dimensional manifolds, Dy-

namical systems and bifurcation theory (Rio de Janeiro, 1985), 59–89, Pitman Res.

Notes Math. Ser., 160, Longman Sci. Tech., Harlow, 1987.
[4] S. Gan, K. Sakai, and L. Wen, C1-stably weakly shadowing homoclinic classes admit

dominated splitting, Discrete Contin. Dyn. Syst. 27 (2010), no. 1, 205–216.
[5] S. Gan and L. Wen, Nonsingular star flows satisfy Axiom A and the no-cycle condition,

Invent. Math. 164 (2006), no. 2, 279–315.
[6] N. Gourmelon, A Franks’ lemma that preserves invariant manifolds, preprint at

http://www.preprint.impa.br/.
[7] S. Hayashi, Connecting invariant manifolds and the solution of the C1-stability and

Ω-stability conjectures for flows, Ann. of Math. (2) 145 (1997), no. 1, 81–137.
[8] M. Komuro, One-parameter flows with the pseudo orbit tracing property, Monatsh.

Math. 98 (1984), no. 3, 219–253.
[9] M. Li, S. Gan, and L. Wen, Robustly transitive singular sets via approach of an extended
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