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CONDITIONAL CENTRAL LIMIT THEOREMS FOR A

SEQUENCE OF CONDITIONAL INDEPENDENT RANDOM

VARIABLES

De-Mei Yuan, Li-Ran Wei, and Lan Lei

Abstract. A conditional version of the classical central limit theorem
is derived rigorously by using conditional characteristic functions, and
a more general version of conditional central limit theorem for the case
of conditionally independent but not necessarily conditionally identically
distributed random variables is established. These are done anticipating
that the field of conditional limit theory will prove to be of significant
applicability.

1. Introduction

Let (Ω,A, P ) be a probability space and let F be a sub-σ-algebra of A. A
finite sequence of random variables {Xk, 1 ≤ k ≤ n} is said to be conditionally
independent with respect to F (F -independent, in short) if, for every Bk ∈ B
(the Borel σ-algebra in R),

(1.1) PF
{

n
∩

k=1
(Xk ∈ Bk)

}

=

n
∏

k=1

PF (Xk ∈ Bk) a.s.

Here and in the sequel, PF (A) denotes the conditional probability of an event
A ∈ A relative to F . An infinite sequence {Xn, n ≥ 1} is said to be F -
independent if every finite subsequence is F -independent. Note that an equiv-
alent condition to (1.1), which was proved by Roussas [8], is

PF
{

n∩
k=1

(Xk ≤ xk)

}

=

n
∏

k=1

PF (Xk ≤ xk) a.s.

for every (x1, x2, . . . , xn) ∈ R
n.
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If F = {Ω, Ø}, then F -independence reduces to the ordinary (uncondi-
tional) independence. In Prakasa Rao [7], concrete examples were given, where
independent random variables lose their independence under conditioning, and
dependent random variables become independent under conditioning.

The random nature of many problems arising in the applied sciences leads
to mathematical models where conditioning is present. For example, martin-
gale sequences are well-known cases of stochastic processes defined through
conditioning. Markov processes are another example of stochastic processes in
which conditioning (specifically, conditional independence) is essential. A more
extensive enumeration of models such as statistical inference and engineering
literature is given by Roussas [8] in which conditioning plays a key role.

A typical example of statistical application of conditional limit theorems
is in the study of statistical inference for some branching processes, such as
the Galton-Watson process (see, e.g. Basawa and Prakasa Rao [1]). Let
{Z0 = 1, Zn, n ≥ 1} be a Galton-Watson process with mean offspring Θ. This
process can be studied by means of the following autoregressive type model:

Zn+1 = ΘZn + Z
1

2

nUn+1, n ≥ 0,

where {Uk, k ≥ 1} is the sequence of error random variables. In order to esti-
mate the mean offspring Θ from a realization {Z0 = 1, Z1, . . . , Zn}, the maxi-

mum likelihood estimator of Θ is Θ̂n = (
∑n

k=1 Zk−1)
−1

(
∑n

k=1 Zk), which coin-
cides with the “least-square” estimator of Θ obtained by minimizing

∑n

k=0 U
2
k

with respect to Θ. The study of asymptotic properties of Θ̂n leads to a con-
ditional limit theorem since, as it is detailed in Basawa and Prakasa Rao [1],

these asymptotic properties of Θ̂n depend on the event of non-extinction of the
process.

As it was pointed out by Prakasa Rao [7], one does have to derive limit
theorems under conditioning if there is a need for such results even though
the results and proofs of such results may be analogous to those under the
non-conditioning setup.

In the field of conditional limit theorems, in addition to the above example,
a lot of efforts have been carried out. For example, Majerek et al. [5] proved a
conditional version of the Kolmogorov strong law of large numbers, Prakasa Rao
[7] obtained conditional versions of the generalized Borel-Cantelli lemma, gen-
eralized Kolmogorov inequality and generalized Hájek-Rényi inequality, Yuan
et al. [10] extended many results from negative association to conditional nega-
tive association, Yuan and Yang [12] generalized many results from association
to conditional association, Ordóñez Cabrera et al. [6] derived some results
on conditional mean convergence theorem and conditional almost sure con-
vergence, Yuan and Lei [11] established conditional results for conditionally
strong mixing sequences, Yuan and Xie [13] studied conditionally linearly neg-
ative quadrant dependence, and all that. But all these efforts are not nearly
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enough in comparison with what should be dedicated to the field of conditional
limit theorems.

Next we pay our attention to a special case of limit theorems. Let {Xn, n≥1}
be a sequence of independent and identically distributed random variables hav-
ing zero means and variance one, and let Sn =

∑n

k=1 Xk. The classical central
limit theorem asserts that Sn/

√
n converges in distribution to the standard

normal distribution Φ (x). It may be of some interest, however, whether or
not this assertion is possible when independence is replaced by conditional in-
dependence for some models described earlier. So we will restrict ourselves to
conditional versions of the central limit theorem and anticipate that conditional
central limit theorems will prove to be of significant applicability.

Throughout the remaining part of this paper, all events and random vari-
ables are defined on the same probability space (Ω,A, P ), F is a sub-σ-algebra
of A, EFX denotes the conditional expectation of a random variableX relative
to F . In addition, we assume that the conditional distribution function FX of
X exists as regular conditional distribution, and this assumption is workable
since the space of values of all random variables in this paper is the real line
(cf. Shiryaev [9]).

2. Definitions and basic results on conditioning

We first recall the concept of conditional characteristic function, which was
originally introduced by Loève [4] and generalized by Roussas [8] and Grzenda
and Zieba [2] independently.

The conditional characteristic function of a random variable X with respect
to F (F -characteristic function, in short) is defined by

ϕX,F (t) = EFeitX
(

= EF cos tX + iEF sin tX
)

a.s., t ∈ R.

Similarly for the joint conditional characteristic function of any random vector
X = (X1, X2, . . . , Xn). If there is no danger of confusion we will write simply
ϕF (t) or ϕF (t1, t2, . . . , tn) without reference to X or X.

The statistical perspective of conditional characteristic function is that of
a Bayesian. A problem begins with a parameter Θ with its prior probability
distribution that exists only in mind of the investigator. The statistical model
that is most commonly in use is that of a sequence {Xn, n ≥ 1} of observable
random variables that is independent and identically distributed for each given
value of Θ. In this case, we may express the (unconditional) characteristic
function of X = (X1, X2, . . . , Xn) in terms of the conditional characteristic
function of X given Θ.

Let us consider a beta-Bernoulli process {Xn, n ≥ 1} with parameters a > 0
and b > 0. In this case, {Xn, n ≥ 1} is a sequence of conditional independent
indicator random variables given Θ with

P (Xn = 1 |Θ = θ ) = θ, 0 < θ < 1, n ≥ 1,
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where Θ is a beta random variable with left parameter a and right parameter
b. Thus, Θ has a probability density function f given by

f (θ) =
1

B (a, b)
θa−1 (1− θ)

b−1
, 0 < θ < 1.

Let F = σ (Θ). Some simple calculations show that the F -characteristic func-
tion corresponding to (X1, X2, . . . , Xn)

ϕF (t1, t2, . . . , tn) =

n
∏

j=1

EFeitjXj

=

n
∏

j=1

[

(1−Θ) + Θeitj
]

= (1−Θ)
n
+ (1−Θ)

n−1
Θ

n
∑

j=1

eitj

+ (1−Θ)
n−2

Θ2
∑

1≤j<k≤n

ei(tj+tk) + · · ·+Θne
i

n∑

j=1

tj

a.s.

and consequently

ϕ (t1, t2, . . . , tn) = EϕF (t1, t2, . . . , tn)

=
1

B (a, b)



B (a, b+ n) +B (a+ 1, b+ n− 1)

n
∑

j=1

eitj

+B (a+ 2, b+ n− 2)
∑

1≤j<k≤n

ei(tj+tk)

+ · · ·+B (a+ n, b) e
i

n∑

j=1

tj

]

.

From the uniqueness theorem for characteristic functions, we have the finite
dimensional distributions

P (X1 = x1, X2 = x2, . . . , Xn = xn) =
B (a+ k, b+ n− k)

B (a, b)
=

a(1,k)b(1,n−k)

(a+ b)
(1,n)

,

where (x1, x2, . . . , xn) ∈ {0, 1}n, k = x1 + x2 + · · · + xn, and r(s,j) = r (r + s)
(r + 2s) · · · (r + (j − 1) s). As usual, we adopt the convention that a product
over an empty index set is 1. Hence r(s,0) = 1 for every r and s.

Compared with the unconditional characteristic function, conditional char-
acteristic function should also have many properties, here we establish the
relation between the conditional characteristic function of a random variable
and its conditional moments which will be used in subsequent sections.
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Lemma 2.1. Let ϕF (t) be the F-characteristic function of X. If EF |X |n < ∞
a.s. for some n ≥ 1, then for every positive integer r satisfying r ≤ n, ϕ

(r)
F (t)

exists almost surely and

(2.1) ϕ
(r)
F (t) = EF [

(iX)
r
eitX

]

a.s.,

(2.2) EFXr =
ϕ
(r)
F (0)

ir
a.s.

and

(2.3) ϕF (t) =
n
∑

r=0

(it)r

r!
EFXr +

(it)n

n!
εFn (t) a.s.,

where
∣

∣εFn (t)
∣

∣ ≤ 3EF |X |n a.s. and εFn (t) → 0 a.s. as t → 0.

Proof. Consider the difference quotient

ϕF (t+ h)− ϕF (t)

t
= EF

[

eitX
(

eihX − 1

h

)]

.

Since
∣

∣

(

eihx − 1
)/

h
∣

∣ ≤ |x| and EF |X | < ∞ a.s., it follows from the condition-
ally dominated convergence theorem that the limit

lim
h→0

EF
[

eitX
(

eihX − 1

h

)]

exists and equals

EF
[

eitX lim
h→0

(

eihX − 1

h

)]

= EF (

iXeitX
)

.

Hence ϕ′
F (t) exists and ϕ′

F (t) = EF (

iXeitX
)

.

The existence of the derivatives ϕ
(r)
F (t), 1 < r ≤ n, and the validity of (2.1),

follow by induction. Relation (2.2) follows immediately from (2.1). Let us now
establish (2.3). Since

eiy = cos y + i sin y =
n−1
∑

k=0

(iy)k

k!
+
(iy)n

n!
[cos θ1y + i sin θ2y]

for real y, with |θ1| ≤ 1 and |θ2| ≤ 1, we have

eitX =
n−1
∑

k=0

(itX)
k

k!
+
(itX)

n

n!
[cos (θ1 (ω) tX) + i sin (θ2 (ω) tX)]

and

EFeitX =

n
∑

k=0

(it)
k

k!
EFXk+

(it)
n

n!
εFn (t) ,

where

εFn (t) = EF {Xn [cos (θ1 (ω) tX) + i sin (θ2 (ω) tX)− 1]} .



6 DE-MEI YUAN, LI-RAN WEI, AND LAN LEI

It is clear that
∣

∣εFn (t)
∣

∣ ≤ 3EF |X |n and the conditionally dominated conver-

gence theorem applies and gives εFn (t) → 0 as t → 0. �

Next we discuss the concept of conditionally identical distribution, which
was proposed by Majerek et al. [5].

Two random variables X and Y are said to be conditionally identically
distributed with respect to F (F -identically distributed, in short) if

PF (X ∈ B) = PF (Y ∈ B) a.s. for all B ∈ B.
An equivalent statement concerning the concept of conditional identical dis-

tribution is the following.

Lemma 2.2. Two random variables X and Y are F-identically distributed if

and only if

PF (X ≤ a) = PF (Y ≤ a) a.s. for all a ∈ R.

Proof. We need only to prove sufficiency. Let C = {(−∞, a] : a ∈ R} be a class
of sets. Obviously, C is closed under intersections. Let

D =
{

B ∈ B : PF (X ∈ B) = PF (Y ∈ B)
}

be another class of sets, then D is a d-system and D ⊃ C. By Shiryaev [9,
Chapter 2, Section 2, Theorem 2],

D ⊃ d (C) = σ (C) = B,
where d (C) denotes the smallest d-system containing C. �

If F = {Ω,Ø}, then F -identical distribution turns into the usual identical
distribution. Furthermore, if X and Y are F -identically distributed, then by a
simple property of conditional expectation

P (X ∈ B) = E
[

PF (X ∈ B)
]

= E
[

PF (Y ∈ B)
]

= P (Y ∈ B)

for all B ∈ B, showing that X and Y are identically distributed.

Remark 2.3. Identically distributed random variables need not always be con-
ditionally identically distributed.

To illustrate this, we give a counter-example. Let Ω = {1, 2, 3, 4, 5, 6} and
let pi = 1/6 be the probability assigned to the event {i}. If events A1, A2 are
defined by A1 = {1, 2}, A2 = {3, 4} and random variables X , Y are defined by
X = IA1

+ 2IA2
, Y = 2IA1

+ IA2
, where IA denotes the indicator function of

an event A, then X and Y are identically distributed.
Suppose that B = {4, 5} and F = {Ω, B,Bc,Ø} is the sub-σ-algebra gener-

ated by B, some simple calculations show that

PF (X ≤ 1) =

{

P (X ≤ 1 |B ) , ω ∈ B

P (X ≤ 1 |B c
) , ω ∈ Bc =

{

1/2, ω ∈ B,

3/4, ω ∈ Bc
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and

PF (Y ≤ 1) =

{

P (Y ≤ 1 |B ) , ω ∈ B

P (Y ≤ 1 |B c
) , ω ∈ Bc =

{

1, ω ∈ B,

1/2, ω ∈ Bc.

So that X and Y are not F -identically distributed by Lemma 2.2.
We now give a result on conditional independence of random variables.

Lemma 2.4. Let X and Y be F-independent random variables, and let ξ and η

be F-measurable random variables. Then for arbitrary B2-measurable functions

f (x, y) and g (x, y),

(2.4) EF [f (X, ξ) g (Y, η)] = EFf (X, ξ) · EFg (Y, η) a.s.,

and similarly for any finite number of random variables.

Proof. First suppose that f = IA1×B1
, g = IA2×B2

, where Ai, Bi ∈ B, i = 1, 2,
then (2.4) follows by assumptions. Let C = {A×B : A ∈ B, B ∈ B} be a class
of sets. Obviously, C is closed under intersections. For fixed A2, B2 ∈ B, define

D1 = {C1 : C1 ∈ B2, EFIC1
(X1, ξ1) IA2×B2

(X2, ξ2)

= EFIC1
(X1, ξ1) ·EFIA2×B2

(X2, ξ2)},
then D1 is a d-system and D1 ⊃ C from what has just now been proved. By
Shiryaev [9, Chapter 2, Section 2, Theorem 2],

D1 ⊃ d (C) = σ (C) = B2.

For fixed C1 ∈ B2, define

D2 =
{

C2 : C2 ∈ B2, EFIC1
(X, ξ) IC2

(Y, η)=EFIC1
(X, ξ)·EFIC2

(Y, η)
}

,

then D2 is a d-system and D2 ⊃ C from what has just now been proved. Again,
by Shiryaev [9, Chapter 2, Section 2, Theorem 2],

D2 ⊃ d (C) = σ (C) = B2.

Up to now, we have proved that

(2.5) EFIC1
(X, ξ) IC2

(Y, η) = EFIC1
(X, ξ) ·EFIC2

(Y, η)

for all C1, C2 ∈ B2.
Next suppose that f ≥ 0 and g ≥ 0. Then there exist nondecreasing se-

quences {fn} and {gn} of nonnegative B2-measurable simple functions such
that 0 ≤ fn ↑ f and 0 ≤ gn ↑ g. In this case equality (2.4) follows for f, g ≥ 0
from (2.5) by using the conditional monotone convergence theorem.

Finally, in the general case relation (2.4) is proved by setting f = f+ − f−

and g = g+ − g− and applying what has just now been proved separately to
f+g+, f+g−, f−g+ and f−g−. �

Using the basic method appearing in the proof of Lemma 2.4, we can prove:
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Lemma 2.5. Let X and Y be F-identically distributed random variables, and

let ξ be an F-measurable random variable. Then for arbitrary B2-measurable

function f (x, y),
EFf (X, ξ) = EFf (Y, ξ) a.s.,

and similarly for any finite number of random variables.

3. Conditional version of the classical central limit theorem

The following conditional version of the classical central limit theorem has
been stated in Prakasa Rao [7] without a proof. Although Grzenda and Zieba
[2] gave a proof, it was not completely stringent. To overcome these, here we
provide a rigorous proof based on lemmas in the previous section. A more
general result will be postponed until Section 4.

Theorem 3.1. Let {Xn, n ≥ 1} be a sequence of F-independent and F-identi-

cally distributed random variables with σ2
F = EF (

X1 − EFX1

)2
< ∞ a.s.

Then

(3.1) EF exp

(

it
Sn − EFSn√

nσF

)

→ e−
t2

2 a.s.

as n → ∞ for every t ∈ R. In particular,

(3.2)
Sn − EFSn√

nσF
→ N (0, 1) in distribution.

Proof. Relation (3.2) follows from (3.1) by using the dominated convergence
theorem and the continuity theorem for characteristic functions. So we need
only to prove (3.1). In view of the F -independence of X1, X2, . . . , Xn and
Lemma 2.4, we conclude that

EF exp

(

it
Sn − EFSn√

nσF

)

= EF

{

n
∏

k=1

exp

[

it√
nσF

(

Xk − EFXk

)

]

}

=
n
∏

k=1

EF exp

[

it√
nσF

(

Xk − EFXk

)

]

.

In view of F -identical distribution and Lemma 2.5, EFX1 = EFX2 = · · · =
EFXn a.s. and EF exp

(

itX1√
nσF

)

= EF exp
(

itX2√
nσF

)

= · · · = EF exp
(

itXn√
nσF

)

a.s., so that
n
∏

k=1

EF exp

[

it√
nσF

(

Xk − EFXk

)

]

=
n
∏

k=1

EF
[

exp

(

itXk√
nσF

)

· exp
(

− itEFXk√
nσF

)]

=

n
∏

k=1

[

EF exp

(

itXk√
nσF

)

· exp
(

− itEFXk√
nσF

)]



CONDITIONAL CENTRAL LIMIT THEOREMS 9

=

[

EF exp

(

itX1√
nσF

)

· exp
(

− itEFX1√
nσF

)]n

=

[

EF exp

(

it√
n

X1 − EFX1

σF

)]n

=

[

ϕF

(

t√
n

)]n

,

where ϕF (t) is the F -characteristic function corresponding to
(

X1−EFX1

)/

σF .
However,

ϕF

(

t√
n

)

= 1− t2

2n
− t2

2n
εF2

(

t√
n

)

by Lemma 2.1, where εF2 (t) satisfies εF2 (t/n) → 0 a.s. as n → ∞ for every
t ∈ R, and therefore

EF
[

exp

(

it
Sn − EFSn√

nσF

)]

=

[

1− t2

2n
− t2

2n
εF2

(

t√
n

)]n

→ e−
t2

2 a.s.

as n → ∞ for fixed t ∈ R. �

4. Conditional version of the general central limit theorem

This section is in fact a continuation of the previous one as we consider
here a more general version of conditional central limit theorem for the case of
F -independent but not necessarily F -identically distributed random variables.

Theorem 4.1. Let {Xn, n ≥ 1} be a sequence of F-independent but not neces-

sarily F-identically distributed random variables with σ2
n,F =EF(Xn−EFXn

)2

< ∞ a.s. for every n ≥ 1. Define B2
n,F = EF (Sn− EFSn)

2. Then the follow-

ing conditions:

(i) lim
n→∞

max
1≤k≤n

σ2

k,F

B2

n,F

= 0 a.s.,

(ii) EF exp
(

itSn−EFSn

Bn,F

)

→ e−
t2

2 as n → ∞
hold if and only if for every ε > 0 the F-Lindeberg condition

(4.1)

lim
n→∞

1

B2
n,F

n
∑

k=1

EF
[

(

Xk − EFXk

)2
I
(
∣

∣Xk − EFXk

∣

∣ > εBn,F
)

]

= 0 a.s.

is satisfied.

Proof. First we will prove the sufficiency. For every n ≥ 1 we set

Xnk =
Xk − EFXk

Bn,F
, 1 ≤ k ≤ n,
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then EFXnk = 0 and
∑n

k=1 E
FX2

nk = 1 a.s. We see easily that (4.1) is equiv-
alent to

(4.2) lim
n→∞

n
∑

k=1

EF [

X2
nkI (|Xnk| > ε)

]

= 0 a.s.

Now, for n ≥ 1 and 1 ≤ k ≤ n, we can write

σ2
n,F

B2
n,F

= EFX2
nk

= EF [

X2
nkI (|Xnk| ≤ ε)

]

+ EF [

X2
nkI (|Xnk| > ε)

]

≤ ε2 + EF [

X2
nkI (|Xnk| > ε)

]

,

so that

max
1≤k≤n

σ2
n,F

B2
n,F

≤ ε2 +

n
∑

k=1

EF [

X2
nkI (|Xnk| > ε)

]

.

In view of (4.2) we see that condition (i) holds.
For the proof of (ii), let ϕnk, F (t) be the F -characteristic function ofXnk and

let ϕn, F (t) be the F -characteristic function of
∑n

k=1 Xnk=
(

Sn−EFSn

)/

Bn,F .
By Lemma 2.4,

ϕn,F (t) =

n
∏

k=1

ϕnk,F (t), t ∈ R.

We choose a t ∈ R and suppose that it is fixed throughout the rest of the
proof. We first prove that

(4.3) lim
n→∞

max
1≤k≤n

|ϕnk,F (t)− 1| = 0 a.s.

Note that

ϕnk,F (t)− 1 = EF (

eitXnk − 1− itXnk

)

and
∣

∣eit − 1− it
∣

∣ ≤ t2

2
,

so that

(4.4) |ϕnk,F (t)− 1| ≤ EF ∣

∣eitXnk − 1− itXnk

∣

∣ ≤ t2

2
EFX2

nk =
t2

2

σ2
k,F

B2
n,F

,

and therefore

max
1≤k≤n

|ϕnk,F (t)− 1| ≤ t2

2
max

1≤k≤n

σ2
k,F

B2
n,F

.

In view of (i), relation (4.3) holds.
Next we show that

(4.5) lim
n→∞

{

lnϕn,F (t)−
n
∑

k=1

[ϕnk,F (t)− 1]

}

= 0 a.s.
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From (4.3) we can choose n sufficiently large so that

|ϕnk,F (t)− 1| ≤ 1

2
a.s.

for all 1 ≤ k ≤ n. Then we have the expansion

lnϕn,F (t) =

n
∑

k=1

lnϕnk,F (t) =

n
∑

k=1

[ϕnk,F (t)− 1] +Rn,F (t) ,

where

Rn,F (t) =

n
∑

k=1

∞
∑

j=2

(−1)
j−1

j
[ϕnk,F (t)− 1]

j
.

For n sufficiently large,

|Rn,F | ≤
n
∑

k=1

∞
∑

j=2

|ϕnk,F (t)− 1|j
j

≤ 1

2

n
∑

k=1

|ϕnk,F (t)− 1|2
1− |ϕnk,F (t)− 1|

≤
n
∑

k=1

|ϕnk,F (t)− 1|2

≤ max
1≤k≤n

|ϕnk,F (t)− 1| ·
n
∑

k=1

|ϕnk,F (t)− 1|.

From (4.4),
n
∑

k=1

|ϕnk,F (t)− 1| ≤ t2

2

n
∑

k=1

σ2
k,F

B2
n,F

=
t2

2
,

so that

|Rn,F (t)| ≤ t2

2
max

1≤k≤n
|ϕnk,F (t)− 1| ,

and (4.5) follows easily.
We now return to the proof of condition (ii) and write

n
∑

k=1

[ϕnk,F (t)− 1] = − t2

2
+ ρFn (t) ,

where

ρFn (t) =
t2

2
+

n
∑

k=1

EF (

eitXnk − 1− itXnk

)

.

Let ε > 0. Since
n
∑

k=1

EFX2
nk = 1 a.s.,
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we can rewrite ρFn (t) as

ρFn (t) =
n
∑

k=1

EF
{[

eitXnk − 1− itXnk −
1

2
(itXnk)

2

]

I (|Xnk| ≤ ε)

}

+

n
∑

k=1

EF
{[

eitXnk − 1− itXnk −
1

2
(itXnk)

2

]

I (|Xnk| > ε)

}

,

so that
∣

∣ρFn (t)
∣

∣

=
|t|3
6

n
∑

k=1

EF
[

|Xnk|3 I (|Xnk| ≤ ε)
]

+ t2
n
∑

k=1

EF
[

|Xnk|2 I (|Xnk| > ε)
]

≤ |t|3 ε
6

n
∑

k=1

EF [

X2
nkI (|Xnk| ≤ ε)

]

+ t2
n
∑

k=1

EF [

X2
nkI (|Xnk| > ε)

]

=
|t|3 ε
6

+ t2
(

1− |t| ε
6

) n
∑

k=1

EF
[

|Xnk|2 I (|Xnk| > ε)
]

.

Here, we have used a inequality
∣

∣

∣
eit − 1− it− (it)

2
/

2!
∣

∣

∣
≤ |t|3

/

3!, which can

be derived from Lemma 5.14 in Kallenberg [3]. Using (4.2), we conclude that

ρFn (t) → 0 a.s. as n → ∞. Finally, we see that ϕF
n (t) → e−t2/2 a.s. as n → ∞

by using (4.5) and complete the proof of (ii).
We now turn to the proof of the necessity. (4.3) holds from condition (i), and

consequently (4.5) holds. On the other hand, we conclude that lnϕn,F (t) →
−t2

/

2 a.s. as n → ∞ from condition (ii). Combining the two results, we obtain

n
∑

k=1

[ϕnk,F (t)− 1] → − t2

2
+ o (1) a.s. as n → ∞.

Taking the real part on both sides, we obtain

t2

2
−

n
∑

k=1

EF (1− cos tXnk) = o (1) a.s. as n → ∞.

Let ε > 0. Then we can rewrite the last relation as

(4.6)
t2

2
−

n
∑

k=1

EF (1− cos tXnk) I (|Xnk| ≤ ε)

=

n
∑

k=1

EF (1− cos tXnk) I (|Xnk| > ε) + o (1) a.s. as n → ∞.

Clearly
n
∑

k=1

EF (1− cos tXnk) I (|Xnk| ≤ ε) ≤ t2

2

n
∑

k=1

EFX2
nkI (|Xnk| ≤ ε)
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=
t2

2

[

1−
n
∑

k=1

EFX2
nkI (|Xnk| > ε)

]

,

so that

(4.7)
t2

2
−

n
∑

k=1

EF (1− cos tXnk) I (|Xnk| ≤ ε) ≥ t2

2

n
∑

k=1

EFX2
nkI (|Xnk| > ε).

On the other hand,

(4.8)

n
∑

k=1

EF (1− cos tXnk) I (|Xnk| > ε) ≤ 2

n
∑

k=1

EFI (|Xnk| > ε)

≤ 2

ε2

n
∑

k=1

EFX2
nkI (|Xnk| > ε)

≤ 2

ε2
.

Combining (4.6), (4.7) and (4.8), we get

0 ≤
n
∑

k=1

EFX2
nkI (|Xnk| > ε) ≤ 2

t2

[

2

ε2
+ o (1)

]

a.s. as n → ∞.

Taking the limits on both sides, first as n → ∞ and then as |t| → ∞, we see
that the F -Lindeberg condition (4.1) is satisfied. �

Remark 4.2. In Theorem 4.1, condition (ii) implies

Sn − EFSn

Bn,F
→ N (0, 1) in distribution as n → ∞.

Proof. This is because of the continuity theorem and the observation
∣

∣

∣

∣

E exp

(

it
Sn − EFSn

Bn,F

)

− e−
t2

2

∣

∣

∣

∣

=

∣

∣

∣

∣

E

[

EF exp

(

it
Sn − EFSn

Bn,F

)

− e−
t2

2

]∣

∣

∣

∣

≤ E

{∣

∣

∣

∣

EF exp

(

it
Sn − EFSn

Bn,F

)

− e−
t2

2

∣

∣

∣

∣

}

.
�

Remark 4.3. Theorem 3.1 is a special case to Theorem 4.1.

Proof. Suppose that {X,Xn, n ≥ 1} is a sequence of F -identical distributed

random variables with σ2
F = EF (

X − EFX
)2

< ∞ a.s. Since

∞
∑

k=1

PF
(
∣

∣

∣

∣

X − EFX

σF

∣

∣

∣

∣

> k

)

≤ EF
∣

∣

∣

∣

X − EFX

σF

∣

∣

∣

∣

≤ 1 a.s.



14 DE-MEI YUAN, LI-RAN WEI, AND LAN LEI

implies

PF
(∣

∣

∣

∣

X − EFX

σF

∣

∣

∣

∣

> k

)

→ 0 a.s. as k → ∞,

and consequently

P

(∣

∣

∣

∣

X − EFX

σF

∣

∣

∣

∣

> k

)

→ 0 as k → ∞.

We conclude that from Lemma 2.5 and the conditional monotone convergence
theorem,

lim
n→∞

1

B2
n,F

n
∑

k=1

EF
[

(

Xk − EFXk

)2
I
(∣

∣Xk − EFXk

∣

∣ > εBn,F
)

]

= lim
n→∞

EF

[

(

X − EFX

σF

)2

I

(
∣

∣

∣

∣

X − EFX

σF

∣

∣

∣

∣

>
√
nε

)

]

= 0.

That is, the F -Lindeberg condition (4.1) is satisfied. �
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