DOI QR코드

DOI QR Code

Assessing the association of single nucleotide polymorphisms in thyroglobulin gene with age of puberty in bulls

  • Fernandez, Maria Elena (Instituto de Genetica Veterinaria (IGEVET), CCT La Plata - CONICET - Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata) ;
  • Goszczynski, Daniel Estanislao (Instituto de Genetica Veterinaria (IGEVET), CCT La Plata - CONICET - Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata) ;
  • Prando, Alberto Jose (Departamento de Produccion Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata) ;
  • Peral-Garcia, Pilar (Instituto de Genetica Veterinaria (IGEVET), CCT La Plata - CONICET - Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata) ;
  • Baldo, Andres (Departamento de Produccion Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata) ;
  • Giovambattista, Guillermo (Instituto de Genetica Veterinaria (IGEVET), CCT La Plata - CONICET - Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata) ;
  • Liron, Juan Pedro (Instituto de Genetica Veterinaria (IGEVET), CCT La Plata - CONICET - Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata)
  • Received : 2014.07.18
  • Accepted : 2014.09.12
  • Published : 2014.09.30

Abstract

Puberty is a stage of sexual development determined by the interaction of many loci and environmental factors. Identification of genes contributing to genetic variation in this character can assist with selection for early pubertal bulls, improving genetic progress in livestock breeding. Thyroid hormones play an important role in sexual development and spermatogenic function. The objective of this study was to evaluate the association between single nucleotide polymorphisms (SNPs) located in thyroglobulin(TG) gene with age of puberty in Angus bulls. Four SNPs were genotyped in 273 animals using SEQUENOM technology and the association between markers and puberty age was analyzed. Results showed a significant association (P < 0.05) between these markers and puberty age estimated at a sperm concentration of 50 million and a progressive motility of 10%. This is the first report of an association of TG polymorphisms with age of puberty in bulls, and results suggest the importance of thyroidal regulation in bovine sexual development and arrival to puberty.

Keywords

References

  1. Ojeda SR, Dubay C, Lomniczi A, Kaidar G, Matagne V, Sandau US, Dissen GA: Gene networks and the neuroendocrine regulation of puberty. Mol Cell Endocrinol 2010, 324:3-11. https://doi.org/10.1016/j.mce.2009.12.003
  2. Johnston DJ, Barwick SA, Corbet NJ, Fordyce G, Holroyd RG, Williams PJ, Burrow HM: Genetics of heifer puberty in two tropical beef genotypes in northern Australia and associations with heifer and steer-production traits. Anim Prod Sci 2009, 49:399-412. https://doi.org/10.1071/EA08276
  3. Fortes MRS, Lehnert SA, Bolormaa S, Reich C, Fordyce G, Corbet NJ, Whan V, Hawken RJ, Reverter A: Finding genes for economically important traits: Brahman cattle puberty. Anim Prod Sci 2012, 52:143-150. https://doi.org/10.1071/AN11165
  4. Warner A, Mittag J: Thyroid hormone and the central control of homeostasis. J Mol Endocrinol 2012, 49:29-35. https://doi.org/10.1530/JME-12-0068
  5. Mullur R, Liu YY, Brent GA: Thyroid hormone regulation of metabolism. Physiol Rev 2014, 94(Suppl2):355-382. https://doi.org/10.1152/physrev.00030.2013
  6. Jannini EA, Crescenzi A, Rucci N, Screponi E, Carosa E, de Matteis A, Macchia E, d'Amati G, D'Armiento M: Ontogenetic pattern of thyroid hormone receptor expression in the human testis. J Clin Endocrinol Metab 2000, 85:3453-3457. https://doi.org/10.1210/jcem.85.9.6803
  7. Mendis-Handagama SM, Siril Ariyaratne HB: Leydig cells, thyroid hormones and steroidogenesis. Indian J Exp Biol 2005, 43(Suppl11):939-962.
  8. Flood DE, Fernandino JI, Langlois VS: Thyroid hormones in male reproductive development: evidence for direct crosstalk between the androgen and thyroid hormone axes. Gen Comp Endocrinol 2013, 192:2-14. https://doi.org/10.1016/j.ygcen.2013.02.038
  9. Duarte-Guterman P, Navarro-Martín L, Trudeau VL: Mechanisms of crosstalk between endocrine systems: Regulation of sex steroid hormone synthesis and action by thyroid hormones. Gen Comp Endocrinol 2014, doi:10.1016/j. ygcen.2014.03.015.
  10. Wagner MS, Wajner SM, Maia AL: Is there a role for thyroid hormone on spermatogenesis? Microsc Res Tech 2009, 72:796-808. https://doi.org/10.1002/jemt.20759
  11. Krassas GE, Papadopoulou F, Tziomalos K, Zeginiadou T, Pontikides N: Hypothyroidism has an adverse effect on human spermatogenesis: A prospective, controlled study. Thyroid 2008, 18(Suppl12):1255-1259. https://doi.org/10.1089/thy.2008.0257
  12. Ram PA, Waxman DJ: Pretranslational control by thyroid hormone of rat liver steroid 5 alpha-reductase and comparison to the thyroid dependence of two growth hormone-regulated CYP2C mRNAs. J Biol Chem 1990, 265(31):19223-19229.
  13. Zhou RJ, Bonneaud N, Yua CX, Barbara PD, Boizet B, Tibor S, Scherer G, Roeder RG, Poulat F, Berta P: SOX9 interacts with a component of the human thyroid hormone receptor-associated protein complex. Nucleic Acids Res 2002, 30(Suppl 14):3245-3252. https://doi.org/10.1093/nar/gkf443
  14. Zhao L, Bakke M, Krimkevich Y, Cushman LJ, Parlow AF, Camper SA, Parker KL: Steroidogenic factor 1 (SF1) is essential for pituitary gonadotrope function. Development 2001, 128(Suppl 2):147-154.
  15. Sugawara T, Kiriakidou M, McAllister JM, Holt JA, Arakane F, Strauss JF: Regulation of expression of the steroidogenic acute regulatory protein (StAR) gene: a central role for steroidogenic factor 1. Steroids 1997, 62:5-9. https://doi.org/10.1016/S0039-128X(96)00152-3
  16. Pelletier G: Localization of androgen and estrogen receptors in rat and primate tissues. Histol Histopathol 2000, 15:1261-1270.
  17. Hou GY, Yuan ZR, Zhou HL, Zhang LP, Li JY, Gao X, Wang DJ, Gao HJ, Xu SZ: Association of thyroglobulin gene variants with carcass and meat quality traits in beef cattle. Mol Biol Rep 2011, 38:4705-4708. https://doi.org/10.1007/s11033-010-0605-1
  18. Lirón JP, Prando A, Fernández ME, Ripoli MV, Rogberg-Muñoz A, Goszczynski DE, Posik DM, Peral-García P, Baldo A, Giovambattista G: Association between GNRHR, LHR and IGF1 polymorphisms and timing of puberty in male Angus cattle. BMC Genet 2012, 5:13-26.
  19. Li N, Stephens M: Modelling linkage disequilibrium, and identifying recombination hotspots using SNP data. Genetics 2003, 165:221-233.
  20. Weber G, Vigone MC, Stroppa L, Chiumello G: Thyroid function and puberty. J Pediatr Endocrinol Metab 2003, 16(Suppl 2):253-257.
  21. Kumar A, Shekhar S, Dhole B: Thyroid and male reproduction. Indian J Endocr Metab 2014, 18(Suppl 1):23-31. https://doi.org/10.4103/2230-8210.126523
  22. Tsai-Morris CH, Xie XZ, Buczko E, Dufau ML: Promoter and regulatory regions of the rat luteinizing hormone receptor gene. J Biol Chem 1993, 268(Suppl 6):4447-4452.
  23. Chiao YC, Lee HY, Wang SW, Hwang JJ, Chien CH, Huang SW, Lu CC, Chen JJ, Tsai SC, Wang PS: Regulation of thyroid hormones on the production of testosterone in rats. J Cell Biochem 1999, 73:554-562. https://doi.org/10.1002/(SICI)1097-4644(19990615)73:4<554::AID-JCB13>3.0.CO;2-L
  24. Fortes MRS, Reverter A, Hawken RJ, Bolormaa S, Lehnert SA: Candidate Genes Associated with Hormone Levels of Inhibin, Luteinising Hormone, and Insulin-Like Growth Factor 1, Testicular Development, and Sperm Quality in Brahman Bulls. Biol Reprod 2012, 87(Suppl 3):58. https://doi.org/10.1095/biolreprod.112.101089
  25. Nonneman D, Rohrer GA, Wise TH, Lunstra DD, Ford JJ: A variant of porcine thyroxine‐binding globulin has reduced affinity for thyroxine and is associated with testis size. Biol Reprod 2005, 72:214-220. https://doi.org/10.1095/biolreprod.104.031922