DOI QR코드

DOI QR Code

Streptozotocin에 의해 유도된 당뇨모델동물에서 황칠나무 (Dendropanax morbifera Leveille)의 열수추출물과 에탄올추출물의 당뇨 질환 개선 효능

Anti-diabetic effects of aqueous and ethanol extract of Dendropanax morbifera Leveille in streptozotocin-induced diabetes model

  • 안나영 (부산대학교 식품영양학과) ;
  • 김지은 (부산대학교 생명자원과학대학) ;
  • 황대연 (부산대학교 생명자원과학대학) ;
  • 류호경 (부산대학교 식품영양학과)
  • An, Na Young (Department of Food Science and Nutrition, Pusan National University) ;
  • Kim, Ji-Eun (Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University) ;
  • Hwang, DaeYoun (Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University) ;
  • Ryu, Ho Kyung (Department of Food Science and Nutrition, Pusan National University)
  • 투고 : 2013.12.02
  • 심사 : 2014.11.26
  • 발행 : 2014.12.31

초록

본 연구는 황칠나무의 부위별 추출물의 항당뇨효능을 평가하기 위해, 황칠나무의 잎과 줄기의 열수추출물과 에탄올추출물을 분리하여 항산화능과 당뇨질환 개선효능을 측정하였다. 그 결과, total polyphenol과 total flavonoid의 농도는 DLW에서 가장 높게 나타났으며, 다음으로 DLE, DSW, DSE 순서로 나타났다. 또한, DPPH 소거능은 DLW가 대부분의 농도에서 가장 높게 나타났으며, DLE는 $500{\mu}g/mL$의 농도에서 가장 높은 DPPH 소거능을 나타내었다. 항산화능이 우수한 DLW와 DLE를 선정하여 STZ로 유도된 당뇨모델동물에 2주간 투여하여 항당뇨 효능을 분석하였다. 그 결과, 체중은 STZ/vehicle 처리군이 급격히 감소하였으나 STZ/DLW와 STZ/DLE 처리군에서 서서히 감소하였다. 혈당량은 STZ/vehicle 처리군에서 급격히 증가하였으며, STZ/DLW 처리군과 STZ/DLE 처리군에서만 유의적인 감소를 나타내었다. 그러나, 혈청 내 인슐린의 농도는 STZ/vehicle 처리군에 비하여 STZ/DLW와 STZ/DLE 처리군에서 증가하였으며, 특히 STZ/DEL-200 처리군에서 가장 높은 농도를 나타내었다. 이러한 변화는 췌장의 조직학적 변화와 면역염색의 결과에서도 동일하게 관찰되었다. 더불어, 뇨당 농도는 STZ/vehicle 처리군에서 급격히 증가하였으며, 오직 STZ/DLW-200 처리군과 STZ/DLE-200 처리군에서만 유의적으로 감소하였다. 이러한 결과는 황칠나무의 잎의 열수추출물과 에탄올추출물은 우수한 항산화효능과 베타세포의 사멸을 억제함으로서 당뇨질환을 개선하는 효능이 있음을 제시하고 있으며, 특히, 200 mg/kg의 농도가 우수한 효능을 나타내는 농도임을 제시하고 있다.

Purpose: Dendropanax morifera Leveille (DML) exhibits diverse biological and pharmacological activities, including anti-oxidative effect, anti-cancer activity, hepatoprotection, immunological stimulation, and bone regeneration. As part of the identification for novel functions of DML, we investigated the therapeutic effects of DML on diabetes induced by streptozotocine (STZ) treatment. Methods: First, the four extracts including the water extract of leaf (DLW), the ethanol extract of leaf (DLE), the water extract of stem (DSW), and the ethanol extract of stem (DSE) were collected from the leaf and stem of DML using a hot water and ethanol solvent. Alterations in body weight, glucose concentration, insulin level, and pancreatic islet structure were investigated in diabetic mice after treatment with extracts of DML for 2 weeks. Results: Among four extracts, the highest level of total polyphenols and total flavonoids was detected in DLW, while the lowest level of these was measured in DSE. The radical scavenging activity was also higher in DLW than in the other three extracts at the concentration of $25-100{\mu}g/mL$, although this activity was maintained at a constant level in all groups at the concentration of $500{\mu}g/mL$. Based on the results of anti-oxidant activity, DLW and DLE were selected for examination of anti-diabetic effects in a diabetes model. Body weight was gradually decreased in all STZ treated groups compared with the No treated group. However, four STZ/DML treated groups maintained a high level of body weight during 7-14 days, while the STZ/vehicle treated group showed a gradual decrease of body weight during the same period. Also, a significant decrease or increase in the concentration of glucose and insulin in the blood of the diabetes model was detected in a subset of groups, although the highest increase was detected in the STZ/DLE-200 treated group. In addition, the histological structure of pancreatic islet was significantly recovered after treatment with DLW and DLE. Conclusion: These results suggest that DLW and DLE may contribute to attenuation of clinical symptoms of diabetes as well as prevent the destruction of pancreatic ${\beta}$-cells in STZ-induced diabetes mice.

키워드

참고문헌

  1. Bernart MW, Cardellina JH 2nd, Balaschak MS, Alexander MR, Shoemaker RH, Boyd MR. Cytotoxic falcarinol oxylipins from Dendropanax arboreus. J Nat Prod 1996; 59(8): 748-753. https://doi.org/10.1021/np960224o
  2. Jeong BS, Jo JS, Pyo BS, Hwang B. Studies on the distribution of Dendropanax morbifera and component analysis of the golden lacquer. Korean J Biotechnol Bioeng 1995; 10(4): 393-400.
  3. Kong YT, Kang IA. Properties of paint film of "Hwangchil" - an ancient Korean natural golden varnish. J Korea For Energy 1993; 13(1): 1-6.
  4. Bae KH, Kim JA, Choi YE. Induction and in vitro proliferation of adventitious roots in Dendropanax morbifera. J Plant Biotechnol 2009; 36(2): 163-169. https://doi.org/10.5010/JPB.2009.36.2.163
  5. Moon CG. Antioxidant activity of Dendropanax morbifera Lev [dissertation]. Gimhae: Inje University; 2007.
  6. Chung IM, Kim MY, Park SD, Park WH, Moon HI. In vitro evaluation of the antiplasmodial activity of Dendropanax morbifera against chloroquine-sensitive strains of Plasmodium falciparum. Phytother Res 2009; 23(11): 1634-1637. https://doi.org/10.1002/ptr.2838
  7. Park BY, Min BS, Oh SR, Kim JH, Kim TJ, Kim DH, Bae KH, Lee HK. Isolation and anticomplement activity of compounds from Dendropanax morbifera. J Ethnopharmacol 2004; 90(2-3): 403-408. https://doi.org/10.1016/j.jep.2003.11.002
  8. Yang JW. Protective effect of hot water extract of Dendropanax morbifera Lev on ethanol-induced liver damage [dissertation]. Seongnam: CHA University; 2010.
  9. Yu HY. Anti-cancer and anti-inflammatory activities of natural compounds isolated from hyul-tong-ryung and Dendropanax morbifera [dissertation]. Busan: Dong-A University; 2012.
  10. Chung IM, Kim MY, Park WH, Moon HI. Antiatherogenic activity of Dendropanax morbifera essential oil in rats. Pharmazie 2009; 64(8): 547-549.
  11. Beak WB. Biological activity studies of Korea specialties Dendropanax morbifera [dissertation]. Seoul: Kyunghee University; 2003.
  12. Li JC, Shen XF, Meng XL. A traditional Chinese medicine JiuHuangLian (Rhizoma coptidis steamed with rice wine) reduces oxidative stress injury in type 2 diabetic rats. Food Chem Toxicol 2013; 59: 222-229. https://doi.org/10.1016/j.fct.2013.06.005
  13. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005; 54(6): 1615-1625. https://doi.org/10.2337/diabetes.54.6.1615
  14. Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 2001; 280(5): E685-E694.
  15. McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002; 51(1): 7-18. https://doi.org/10.2337/diabetes.51.1.7
  16. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552(Pt 2): 335-344. https://doi.org/10.1113/jphysiol.2003.049478
  17. Sellamuthu PS, Arulselvan P, Fakurazi S, Kandasamy M. Beneficial effects of mangiferin isolated from Salacia chinensis on biochemical and hematological parameters in rats with streptozotocininduced diabetes. Pak J Pharm Sci 2014; 27(1): 161-167.
  18. Abo-elmatty DM, Essawy SS, Badr JM, Sterner O. Antioxidant and anti-inflammatory effects of Urtica pilulifera extracts in type 2 diabetic rats. J Ethnopharmacol 2013; 145(1): 269-277. https://doi.org/10.1016/j.jep.2012.11.002
  19. Soon YY, Tan BK. Evaluation of the hypoglycemic and anti-oxidant activities of Morinda officinalis in streptozotocin-induced diabetic rats. Singapore Med J 2002; 43(2): 077-085.
  20. Moon HI. Antidiabetic effects of dendropanoxide from leaves of Dendropanax morbifera Leveille in normal and streptozotocininduced diabetic rats. Hum Exp Toxicol 2011; 30(8): 870-875. https://doi.org/10.1177/0960327110382131
  21. Hatano T, Edamatsu R, Hiramatsu M, Mori A, Fujita Y, Yasuhara T, Yoshida T, Okuda T. Effects of the interaction of tannins with coexisting substances. VI. : effects of tannins and related polyphenols on superoxide anion radical, and on 1, 1-diphenyl-2-picrylhydrazyl radical. Chem Pharm Bull 1989; 37(8): 2016-2021. https://doi.org/10.1248/cpb.37.2016
  22. Folin O, Denis W. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 1912; 12: 239-243.
  23. Isla MI, Nieva Moreno MI, Sampietro AR, Vattuone MA. Antioxidant activity of Argentine propolis extracts. J Ethnopharmacol 2001; 76(2): 165-170. https://doi.org/10.1016/S0378-8741(01)00231-8
  24. Zhang XH, Choi SK, Seo JS. Effect of dietary grape pomace on lipid oxidation and related enzyme activities in rats fed high fat diet. Korean J Nutr 2009; 42(5): 415-422. https://doi.org/10.4163/kjn.2009.42.5.415
  25. Park SN. Skin aging and antioxidant. J Soc Cosmet Sci Korea 1997; 23(1): 75-132.
  26. Jung MJ, Heo SI, Wang MH. Comparative studies for component analysis in acorn powders from Korea and China. Korean J Pharmacogn 2007; 38(1): 90-94.
  27. Kwon GJ, Choi DS, Wang MH. Biological activities of hot water extracts from Euonymus alatus leaf. Korean J Food Sci Technol 2007; 39(5): 569-574.
  28. Kim SM, Jeon JS, Kang SW, Kim WR, Lee KD, Um BH. Composition analysis and antioxidant activity of Ojuk (Phyllostachys nigra Munro) leaf tea and shoot tea. J Appl Biol Chem 2012; 55(2): 95-101. https://doi.org/10.3839/jabc.2011.065
  29. Lee SH, Lee YM, Lee HS, Kim DK. Anti-oxidative and antihyperglycemia effects of Triticum aestivum wheat sprout water extracts on the streptozotocin-induced diabetic mice. Korean J Pharmacogn 2009; 40(4): 408-414.
  30. Yoon JA, Kim JJ, Song BC. Effects of Opuntia ficus-indica complexes on blood glucose and pancreatic islets histology in streptozotocin- induced diabetic rats. J East Asian Soc Diet Life 2012; 22(3): 334-340.
  31. Watanabe H, Sumi S, Urushihata T, Kitamura Y, Iwasaki S, Xu G, Yano S, Nio Y, Tamura K. Immunohistochemical studies on vascular endothelial growth factor and platelet endothelial cell adhesion molecule-1/CD-31 in islet transplantation. Pancreas 2000; 21(2): 165-173. https://doi.org/10.1097/00006676-200008000-00010

피인용 문헌

  1. Antimicrobial and Antioxidant Activities of Ethanol Leaf Extract of Dendropanax morbiferus Lev. vol.31, pp.5, 2015, https://doi.org/10.9724/kfcs.2015.31.5.515
  2. Dendropanax morbifera Léveille extract ameliorates memory impairments and inflammatory responses in the hippocampus of streptozotocin-induced type 1 diabetic rats vol.12, pp.4, 2016, https://doi.org/10.1007/s13273-016-0047-5
  3. Screening test for Dendropanax morbifera Leveille extracts: in vitro comparison to ox-LDL-induced lipid accumulation, ethanol-induced fatty liver and HMG-CoA reductase inhibition vol.61, pp.1, 2018, https://doi.org/10.3839/jabc.2018.001
  4. Antioxidant, cytotoxic, and antidiabetic activities of Dendropanax morbifera extract for production of health-oriented food materials vol.18, pp.6, 2019, https://doi.org/10.5897/AJB2018.16694
  5. 건조 스트레스에 따른 황칠나무 유묘의 광합성과 수분특성인자 변화 vol.26, pp.2, 2018, https://doi.org/10.7783/kjmcs.2018.26.2.181
  6. Protective Effects of Dendropanax morbifera against Cisplatin-Induced Nephrotoxicity without Altering Chemotherapeutic Efficacy vol.8, pp.8, 2019, https://doi.org/10.3390/antiox8080256
  7. Antioxidant and antithrombotic properties of Dendropanax morbifera Léveille (Araliaceae) and its ferments produced by fermentation processing vol.43, pp.12, 2019, https://doi.org/10.1111/jfbc.13056
  8. 황칠(黃漆) 약침이 정신 스트레스를 받은 백서의 수면 관련 호르몬, 인지에 미치는 영향 vol.30, pp.4, 2019, https://doi.org/10.7231/jon.2019.30.4.341
  9. Treating Hyperglycemia From Eryngium caeruleum M. Bieb: In - vitro α-Glucosidase, Antioxidant, in-vivo Antidiabetic and Molecular Docking-Based Approaches vol.8, pp.None, 2014, https://doi.org/10.3389/fchem.2020.558641
  10. 사염화탄소로 유발된 산화적 손상에 대한 황칠나무 잎 추출물의 간세포 보호 효과 vol.30, pp.4, 2014, https://doi.org/10.5352/jls.2020.30.4.370
  11. Dendropanax Morbiferus and Other Species from the Genus Dendropanax: Therapeutic Potential of Its Traditional Uses, Phytochemistry, and Pharmacology vol.9, pp.10, 2014, https://doi.org/10.3390/antiox9100962
  12. Anti-diabetic effects of aqueous extract of Dendropanax morbifera Lev. leaves in streptozotocin-induced diabetic Sprague-Dawley rats vol.61, pp.4, 2014, https://doi.org/10.14405/kjvr.2021.61.e38