DOI QR코드

DOI QR Code

Oral Administration of Lactobacillus plantarum HY7714 Protects Hairless Mouse Against Ultraviolet B-Induced Photoaging

  • Received : 2014.06.13
  • Accepted : 2014.08.06
  • Published : 2014.11.28

Abstract

Ultraviolet (UV) irradiation alters multiple molecular pathways in the skin, thereby inducing skin damage, including photoaging. In recent years, probiotics have gained interest due to their beneficial effects on skin health, such as inhibiting atopic dermatitis and improving skin immunity or inflammation. However, little is known about the effects of probiotics on UVB-induced photoaging. In this study, we evaluated the effect of Lactobacillus plantarum HY7714 against UVB-induced photoaging in human dermal fibroblasts and hairless mice. The results showed that L. plantarum HY7714 treatment effectively rescued UVB-reduced procollagen expression through the inhibition of UVB-induced matrix metalloproteinase (MMP)-1 expression in human dermal fibroblasts. Data from a western blot showed that L. plantarum HY7714 inhibited the phosphorylation of Jun N-terminal kinase, thereby suppressing the UVB-induced phosphorylation and expression of c-Jun. Oral administration of L. plantarum HY7714 clearly inhibited the number, depth, and area of wrinkles in hairless mouse skin. Histological data showed that L. plantarum HY7714 significantly inhibited UVB-induced epidermal thickness in mice. Western blot and zymography data also revealed that L. plantarum HY7714 effectively inhibited MMP-13 expression as well as MMP-2 and -9 activities in dermal tissue. Collectively, these results provide further insight regarding the skin biological actions of L. plantarum HY7714, a potential skin anti-photoaging agent.

Keywords

References

  1. Amano S. 2009. Possible involvement of basement membrane damage in skin photoaging. J. Investig. Dermatol. Symp. Proc. 14: 2-7.
  2. Berneburg M, Plettenberg H, Krutmann J. 2000. Photoaging of human skin. Photodermatol. Photoimmunol. Photomed. 16: 239-244. https://doi.org/10.1034/j.1600-0781.2000.160601.x
  3. Bouilly-Gauthier D, Jeannes C, Maubert Y, Duteil L, Queille- Roussel C, Piccardi N, et al. 2010. Clinical evidence of benefits of a dietary supplement containing probiotic and carotenoids on ultraviolet-induced skin damage. Br. J. Dermatol. 163: 536-543. https://doi.org/10.1111/j.1365-2133.2010.09888.x
  4. Chung JH, Seo JY, Choi HR, Lee MK, Youn CS, Rhie G, et al. 2001. Modulation of skin collagen metabolism in aged and photoaged human skin in vivo. J. Invest. Dermatol. 117: 1218-1224. https://doi.org/10.1046/j.0022-202x.2001.01544.x
  5. Cuenda A. 2000. Mitogen-activated protein kinase kinase 4 (MKK4). Int. J. Biochem. Cell Biol. 32: 581-587. https://doi.org/10.1016/S1357-2725(00)00003-0
  6. Eigenmann PA. 2013. Evidence of preventive effect of probiotics and prebiotics for infantile eczema. Curr. Opin. Allergy Clin. Immunol. 13: 426-431. https://doi.org/10.1097/ACI.0b013e3283630bad
  7. Elazab N, Mendy A, Gasana J, Vieira ER, Quizon A, Forno E. 2013. Probiotic administration in early life, atopy, and asthma: a meta-analysis of clinical trials. Pediatrics 132: e666- e676. https://doi.org/10.1542/peds.2013-0246
  8. Fisher G, Voorhees JJ. 1998. Molecular mechanisms of photoaging and its prevention by retinoic acid: ultraviolet irradiation induces MAP kinase signal transduction cascades that induce Ap-1-regulated matrix metalloproteinases that degrade human skin in vivo. J. Investig. Dermatol. Symp. Proc. 3: 61-68.
  9. Foligne B, Daniel C, Pot B. 2013. Probiotics from research to market: the possibilities, risks and challenges. Curr. Opin. Microbiol. 16: 284-292. https://doi.org/10.1016/j.mib.2013.06.008
  10. Foolad N, Brezinski EA, Chase EP, Armstrong AW. 2013. Effect of nutrient supplementation on atopic dermatitis in children: a systematic review of probiotics, prebiotics, formula, and fatty acids. JAMA Dermatol. 149: 350-355. https://doi.org/10.1001/jamadermatol.2013.1495
  11. Grether-Beck S, Marini A, Jaenicke T, Krutmann J. 2014. Photoprotection of human skin beyond ultraviolet radiation. Photodermatol. Photoimmunol. Photomed. 30: 167-174. https://doi.org/10.1111/phpp.12111
  12. Gueniche A, Philippe D, Bastien P, Blum S, Buyukpamukcu E, Castiel-Higounenc I. 2009. Probiotics for photoprotection. Dermatoendocrinology 1: 275-279. https://doi.org/10.4161/derm.1.5.9849
  13. Gueniche A, Bastien P, Ovigne JM, Kermici M, Courchay G, Chevalier V, et al. 2010. Bifidobacterium longum lysate, a new ingredient for reactive skin. Exp. Dermatol. 19: e1-e8. https://doi.org/10.1111/j.1600-0625.2009.01012.x
  14. Han Y, Kim B, Ban J, Lee J, Kim BJ, Choi BS, et al. 2012. A randomized trial of Lactobacillus plantarum CJLP133 for the treatment of atopic dermatitis. Pediatr. Allergy Immunol. 23: 667-673. https://doi.org/10.1111/pai.12010
  15. Hwang B M, Noh EM, K im J S, K im JM, You Y O, Hwang JK, et al. 2013. Curcumin inhibits UVB-induced matrix metalloproteinase-1/3 expression by suppressing the MAPKp38/ JNK pathways in human dermal fibroblasts. Exp. Dermatol. 22: 371-374. https://doi.org/10.1111/exd.12137
  16. Inomata S, Matsunaga Y, Amano S, Takada K, Kobayashi K, Tsunenaga M, et al. 2003. Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse. J. Invest. Dermatol. 120: 128-134. https://doi.org/10.1046/j.1523-1747.2003.12021.x
  17. Janulis M, Silberman S, Ambegaokar A, Gutkind JS, Schultz RM. 1999. Role of mitogen-activated protein kinases and c- Jun/AP-1 trans-activating activity in the regulation of protease mRNAs and the malignant phenotype in NIH 3T3 fibroblasts J. Biol. Chem. 274: 801-813. https://doi.org/10.1074/jbc.274.2.801
  18. Kim JA, Ahn BN, Kong CS, Kim SK. 2012. Protective effect of chromene isolated from Sargassum horneri against UV-Ainduced damage in skin dermal fibroblasts. Exp. Dermatol. 21: 630-631. https://doi.org/10.1111/j.1600-0625.2012.01535.x
  19. Kuitunen M. 2013. Probiotics and Rebiotics in preventing food allergy and eczema. Curr. Opin. Allergy Clin. Immunol. 13: 280-286. https://doi.org/10.1097/ACI.0b013e328360ed66
  20. Lee KE, Mun S, Pyun HB, Kim MS, Hwang JK. 2012. Effects of macelignan isolated from Myristica fragrans (Nutmeg) on expression of matrix metalloproteinase-1 and type I procollagen in UVB-irradiated human skin fibroblasts. Biol. Pharm. Bull. 35: 1669-1675. https://doi.org/10.1248/bpb.b12-00037
  21. Lew LC, Liong MT. 2013. Bioactives from probiotics for dermal health: functions and benefits. J. Appl. Microbiol. 114: 1241-1253. https://doi.org/10.1111/jam.12137
  22. Meng Q, Xia Y. 2011. c-Jun, at the crossroad of the signaling network. Protein Cell 2: 889-898. https://doi.org/10.1007/s13238-011-1113-3
  23. Poulalhon N, Farge D, Roos N, Tacheau C, Neuzillet C, Michel L, et al. 2006. Modulation of collagen and MMP-1 gene expression in fibroblasts by the immunosuppressive drug rapamycin. A direct role as an antifibrotic agent. J. Biol. Chem. 281: 33045-33052. https://doi.org/10.1074/jbc.M606366200
  24. Pyun HB, Kim M, Park J, Sakai Y, Numata N, Shin JY, et al. 2012. Effects of collagen tripeptide supplement on photoaging and epidermal skin barrier in UVB-exposed hairless mice. Prev. Nutr. Food Sci. 17: 245-253. https://doi.org/10.3746/pnf.2012.17.4.245
  25. Quan T, Qin Z, Xia W, Shao Y, Voorhees JJ, Fisher GJ. 2009. Matrix-degrading metalloproteinases in photoaging. J. Investig. Dermatol. Symp. Proc. 14: 20-24.
  26. Raone B, Raboni R, Patrizi A. 2013. Probiotics reduce gut microbial translocation and improve adult atopic dermatitis. J. Clin. Gastroenterol. 48: 95-96.
  27. Rittie L, Fisher GJ. 2002. UV-light-induced signal cascades and skin aging. Ageing Res. Rev. 1: 705-720. https://doi.org/10.1016/S1568-1637(02)00024-7
  28. Ropke CD, da Silva VV, Kera CZ, Miranda DV, de Almeida RL, Sawada TC, Barros SB. 2006. In vitro and in vivo inhibition of skin matrix metalloproteinases by Pothomorphe umbellata root extract. Photochem. Photobiol. 82: 439-442. https://doi.org/10.1562/2005-06-29-RA-596
  29. Sawada J, Morita H, Tanaka A, Salminen S, He F, Matsuda H. 2007. Ingestion of heat-treated Lactobacillus rhamnosus GG prevents development of atopic dermatitis in NC/Nga mice. Clin. Exp. Immunol. 37: 296-303.
  30. Staniforth V, Huang WC, Aravindaram K, Yang NS. 2012. Ferulic acid, a phenolic phytochemical, inhibits UVB-induced matrix metalloproteinases in mouse skin via posttranslational mechanisms. J. Nutr. Biochem. 23: 443-451. https://doi.org/10.1016/j.jnutbio.2011.01.009
  31. Sugimoto S, Ishii Y, Izawa N, Masuoka N, Kano M, Sone T, et al. 2012. Photoprotective effects of Bifidobacterium breve supplementation against skin damage induced by ultraviolet irradiation in hairless mice. Photodermatol. Photoimmunol. Photomed. 28: 312-319. https://doi.org/10.1111/phpp.12006
  32. Tobita K, Yanaka H, Otani H. 2009. Heat-treated Lactobacillus crispatus KT strains reduce allergic symptoms in mice. J. Agric. Food Chem. 57: 5586-5590. https://doi.org/10.1021/jf900703q
  33. Vincenti MP, White LA, Schroen DJ, Benbow U, Brinckerhoff CE. 1996. Regulating expression of the gene for matrix metalloproteinase-1 (collagenase): mechanisms that control enzyme activity, transcription, and mRNA stability. Crit. Rev. Eukaryot. Gene Expr. 6: 391-411. https://doi.org/10.1615/CritRevEukarGeneExpr.v6.i4.40
  34. Watanabe T, Hamada K, Tategaki A, Kishida H, Tanaka H, Kitano M, Miyamoto T. 2009. Oral administration of lactic acid bacteria isolated from traditional South Asian fermented milk 'dahi' inhibits the development of atopic dermatitis in NC/Nga mice. J. Nutr. Sci. Vitaminol. 55: 271-278. https://doi.org/10.3177/jnsv.55.271
  35. Weill FS, Cela EM, Paz ML, Ferrari A, Leoni J, Maglio DH. 2013. Lipoteichoic acid from Lactobacillus rhamnosus GG as an oral photoprotective agent against UV-induced carcinogenesis. Br. J. Nutr. 109: 457-466. https://doi.org/10.1017/S0007114512001225
  36. Yu BC, Lee DS, Bae SM, Jung WK, Chun JH, Urm SH, et al. 2013. The effect of cilostazol on the expression of matrix metalloproteinase-1 and type I procollagen in ultravioletirradiated human dermal fibroblasts. Life Sci. 92: 282-288. https://doi.org/10.1016/j.lfs.2012.12.011
  37. You GE, Jung BJ, Kim HR, Kim HG, Kim TR, Chung DK. 2013. Lactobacillus sakei lipoteichoic acid inhibits MMP-1 induced by UVA in normal dermal fibroblasts of human. J. Microbiol. Biotechnol. 23: 1357-1364. https://doi.org/10.4014/jmb.1306.06026

Cited by

  1. Clinical Evidence of Effects of Lactobacillus plantarum HY7714 on Skin Aging: A Randomized, Double Blind, Placebo-Controlled Study vol.25, pp.12, 2014, https://doi.org/10.4014/jmb.1509.09021
  2. Phytosphingosine-1-phosphate and epidermal growth factor synergistically restore extracellular matrix in human dermal fibroblasts in vitro and in vivo vol.39, pp.3, 2014, https://doi.org/10.3892/ijmm.2017.2866
  3. Message in a Bottle: Dialog between Intestine and Skin Modulated by Probiotics vol.18, pp.6, 2017, https://doi.org/10.3390/ijms18061067
  4. Skin resistance to UVB‐induced oxidative stress and hyperpigmentation by the topical use of Lactobacillus helveticus NS8‐fermented milk supernatant vol.123, pp.2, 2014, https://doi.org/10.1111/jam.13506
  5. Origination, change, and modulation of geriatric disease-related gut microbiota during life vol.102, pp.19, 2014, https://doi.org/10.1007/s00253-018-9264-2
  6. Gut Dysbiosis and Muscle Aging: Searching for Novel Targets against Sarcopenia vol.2018, pp.None, 2014, https://doi.org/10.1155/2018/7026198
  7. The Gut Microbiome as a Major Regulator of the Gut-Skin Axis vol.9, pp.None, 2014, https://doi.org/10.3389/fmicb.2018.01459
  8. Lactobacillus plantarum HY7714 Restores TNF-α Induced Defects on Tight Junctions vol.24, pp.1, 2014, https://doi.org/10.3746/pnf.2019.24.1.64
  9. Functional Role of Probiotics and Prebiotics on Skin Health and Disease vol.5, pp.2, 2014, https://doi.org/10.3390/fermentation5020041
  10. Fermentation of Blackberry with L. plantarum JBMI F5 Enhance the Protection Effect on UVB-Mediated Photoaging in Human Foreskin Fibroblast and Hairless Mice through Regulation of MAPK/NF-κB Sign vol.11, pp.10, 2014, https://doi.org/10.3390/nu11102429
  11. The Skin Interactome: A Holistic “Genome-Microbiome-Exposome” Approach to Understand and Modulate Skin Health and Aging vol.13, pp.None, 2014, https://doi.org/10.2147/ccid.s239367
  12. Regulatory effects of Lactobacillus plantarum  HY7714 on skin health by improving intestinal condition vol.15, pp.4, 2020, https://doi.org/10.1371/journal.pone.0231268
  13. Regulatory effects of Lactobacillus plantarum -GMNL6 on human skin health by improving skin microbiome vol.18, pp.5, 2014, https://doi.org/10.7150/ijms.51545
  14. Fermented black rice and blueberry with Lactobacillus plantarum MG4221 improve UVB-induced skin injury vol.32, pp.1, 2014, https://doi.org/10.1080/09540105.2021.1967300
  15. Lactobacillus rhamnosus GG Colonization in Early Life Ameliorates Inflammaging of Offspring by Activating SIRT1/AMPK/PGC-1 α Pathway vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/3328505
  16. Boosting the Photoaged Skin: The Potential Role of Dietary Components vol.13, pp.5, 2014, https://doi.org/10.3390/nu13051691
  17. Challenging Cosmetic Innovation: The Skin Microbiota and Probiotics Protect the Skin from UV-Induced Damage vol.9, pp.5, 2014, https://doi.org/10.3390/microorganisms9050936
  18. Skin Antiaging Effects of the Fermented Outer Layers of Leaf Skin of Aloe barbadensis Miller Associated with the Enhancement of Mitochondrial Activities of UVb-Irradiated Human Skin Fibroblasts vol.11, pp.12, 2014, https://doi.org/10.3390/app11125660
  19. Multi-Omics Interpretation of Anti-Aging Mechanisms for ω-3 Fatty Acids vol.12, pp.11, 2014, https://doi.org/10.3390/genes12111691