References
- APHA. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, Washington, DC.
- Braquglia CM, Gianico A, Mininni G. 2012. Comparison between ozone and ultrasound disintegration on sludge anaerobic digestion. J. Environ. Manage. 95: S139-S143. https://doi.org/10.1016/j.jenvman.2010.07.030
- Cai M, Liu J, Wei Y. 2004. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environ. Sci. Technol. 38: 3195-3202. https://doi.org/10.1021/es0349204
- Chen CC, Lin CY, Lin MC. 2002. Acid-base enrichment enhances anaerobic hydrogen production process. Appl. Microbiol. Biotechnol. 58: 224-228. https://doi.org/10.1007/s002530100814
- Chinellato G, Cavinato C, Bolzonella D, Heaven S, Banks CJ. 2013. Biohydrogen production from food waste in batch and semi-continuous conditions: evaluation of a two-phase approach with digestate recirculation for pH control. Int. J. Hydrogen Energy 38: 4351-4360. https://doi.org/10.1016/j.ijhydene.2013.01.078
- Deppenmeier U, Müller V, Gottschalk G. 1996. Pathways of energy conservation in methanogenic archaea. Arch. Microbiol. 165: 149-163. https://doi.org/10.1007/BF01692856
- Escamilla-Alvarado C, Ponce-Noyola T, Rios-Leal E, Poggi- Varaldo HM. 2013. A multivariable evaluation of biohydrogen production by solid substrate fermentation of organic municipal wastes in semi-continuous and batch operation. Int. J. Hydrogen Energy 38: 12527-12538. https://doi.org/10.1016/j.ijhydene.2013.02.124
- Fox P, Pohland FG. 1994. Anaerobic treatment applications and fundamentals: substrate specificity during phase separation. Water Environ. Res. 66: 716-724. https://doi.org/10.2175/WER.66.5.8
- Gandia LM, Arzamendi G, Dieguez PM. 2013. Renewable Hydrogen Technologies, Production, Purification, Storage, Applications and Safety. Elsevier, Amsterdam, Oxford, Waltham.
- Gadhe A, Sonawane SS, Varma MN. 2013. Optimization of conditions for hydrogen production from complex dairy wastewater by anaerobic sludge using desirability function approach. Int. J. Hydrogen Energy 38: 6607-6617. https://doi.org/10.1016/j.ijhydene.2013.03.078
- Gue WQ, Ren NQ, Wang XJ, Xiang WS, Meng ZH, Ding J, et al. 2008. Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor. Int. J. Hydrogen Energy 33: 4981-4988. https://doi.org/10.1016/j.ijhydene.2008.05.033
- Guo WQ, Ding J, Cao GL, Ren NQ, Cui FY. 2011. Treatability study of using low frequency ultrasonic pretreatment to augment continuous biohydrogen production. Int. J. Hydrogen Energy 36: 14180-14185. https://doi.org/10.1016/j.ijhydene.2011.04.057
- Guo WQ, Meng ZH, Ren NQ, Zhang ZP, Cui FY. 2011. Optimization of key variables for the enhanced production of hydrogen by Ethanoligenens harbinense W1 using response surface methodology. Int. J. Hydrogen Energy 36: 5843-5848. https://doi.org/10.1016/j.ijhydene.2010.11.004
- Jang HM, Cho HU, Park SK, Ha JH, Park JM. 2013. Influence of thermophilic aerobic digestion as a sludge pretreatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process. Water Res. 48: 1-14.
- Khanal SK, Montalbo M, Leeuwen J, Srinivasan G, Grewell D. 2007. Ultrasound enhanced glucose release from corn in ethanol plants. Biotechnol. Bioeng. 98: 978-985. https://doi.org/10.1002/bit.21497
- Kim MS, Lee DY. 2010. Fermentative hydrogen production from tofu-processing waste and anaerobic digester sludge using microbial consortium. Bioresour. Technol. 101: S48-S52. https://doi.org/10.1016/j.biortech.2009.03.040
- Kim SH, Han SK, Shin HS. 2004. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int. J. Hydrogen Energy 29: 1607-1616. https://doi.org/10.1016/j.ijhydene.2004.02.018
- Lay CH, Biswarup S, Chen CC, Wu JH, Lee SC, Lin CY. 2013. Co-fermentation of water hyacinth and beverage wastewater in powder and pellet form for hydrogen production. Bioresour. Technol. 135: 610-615. https://doi.org/10.1016/j.biortech.2012.06.094
- Lay JJ. 2001. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol. Bioeng. 74: 280-287. https://doi.org/10.1002/bit.1118
- Lee YJ, Miyahara T, Noike T. 2001. Effects of iron concentration on hydrogen fermentation. Bioresour. Technol. 80: 227-231. https://doi.org/10.1016/S0960-8524(01)00067-0
- Lee M, Hidaka T, Hagiwara W, Tsuno H. 2009. Comparative performance and microbial diversity of hyperthermophilic and thermophilic co-digestion of kitchen garbage and excess sludge. Bioresour. Technol. 100: 578-585 https://doi.org/10.1016/j.biortech.2008.06.063
- Li J, Li B, Zhu G, Ren N, Bo L, He J. 2007. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR) Int. J. Hydrogen Energy 32: 3274-3283. https://doi.org/10.1016/j.ijhydene.2007.04.023
- Li M, Zhao YC, Guo Q, Qian XQ, Niu DJ. 2008. Biohydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill. Renew Energ. 33: 2573-2579. https://doi.org/10.1016/j.renene.2008.02.018
- Miller GL. 1954. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.
- Mitchell WJ. 2001. Biology and physiology, pp. 53-68. In Bahl H, Purre P (eds.). Clostrida: Biotechnology and Medical Application. Wiley-VCH, Weinheim, Germany.
- Mu Y, Yu HQ, Wang G. 2007. Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. Enzyme Microb. Technol. 40: 947-953. https://doi.org/10.1016/j.enzmictec.2006.07.033
- Narra M, Balasubramanian V, Mehta H, Dixit G, Madamwar D, Shah AR. 2014. Performance evaluation of anaerobic hybrid reactors with different packing media for treating wastewater of mild alkali treated rice straw in ethanol fermentation process. Bioresour. Technol. 152: 59-65. https://doi.org/10.1016/j.biortech.2013.10.071
- Pan J, Chen X, Sheng K, Yu Y, Zhang C, Ying Y. 2013. Effect of ammonia on biohydrogen production from food waste via anaerobic fermentation. Int. J. Hydrogen Energy 38: 12747-12754. https://doi.org/10.1016/j.ijhydene.2013.06.093
- Ren N, Li J, Li B, Wang Y, Liu S. 2006. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int. J. Hydrogen Energy 31: 2147-2157. https://doi.org/10.1016/j.ijhydene.2006.02.011
- Sreelaor C, Imai T, Plangklang P, Reungsang A. 2011. Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures. Int. J. Hydrogen Energy 36: 14120-14133. https://doi.org/10.1016/j.ijhydene.2011.04.136
- Weemaes MPJ, Willy HV. 1998. Evaluation of current wet sludge disintegration techniques. J. Chem. Technol. Biotechnol. 73: 83-92. https://doi.org/10.1002/(SICI)1097-4660(1998100)73:2<83::AID-JCTB932>3.0.CO;2-2
- Yang SS, Guo WQ, Cao GL, Zheng HS, Ren NQ. 2012. Simultaneous waste activated sludge disintegration and biological hydrogen production using an ozone/ultrasound pretreatment. Bioresour. Technol. 124: 347-354. https://doi.org/10.1016/j.biortech.2012.08.007
- Zhang L, Zhang S, Wang S, Wu C, Chen Y, Wang Y, Peng Y. 2013. Enhanced biological nutrient removal in a simultaneous fermentation, denitrification and phosphate removal reactor using primary sludge as internal carbon source. Chemosphere 91: 636-640.
- Zhao MX, Ruan WQ. 2014. Improving hydrogen generation from kitchen wastes by microbial acetate tolerance response. Energy Convers. Manage. 77: 419-423. https://doi.org/10.1016/j.enconman.2013.10.007
- Zhu HG, Parker W, Basnar R, Proracki A, Falletta P, Beland M. 2008. Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges. Int. J. Hydrogen Energy 33: 3651-3659. https://doi.org/10.1016/j.ijhydene.2008.04.040
Cited by
- Fermentative hydrogen production from sewage sludge vol.47, pp.14, 2014, https://doi.org/10.1080/10643389.2017.1348107
- Enhanced Hydrogen Production from Sewage Sludge by Co-fermentation with Forestry Wastes vol.31, pp.9, 2017, https://doi.org/10.1021/acs.energyfuels.7b02135