DOI QR코드

DOI QR Code

Efficient Expression, Purification, and Characterization of a Novel FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus in Pichia pastoris

  • Yang, Yufeng (School of Bioscience and Bioengineering, South China University of Technology) ;
  • Huang, Lei (Department of Chemical and Biological Engineering, Zhejiang University) ;
  • Wang, Jufang (School of Bioscience and Bioengineering, South China University of Technology) ;
  • Wang, Xiaoning (Institute of Life Science, General Hospital of The People's Liberation Army) ;
  • Xu, Zhinan (Department of Chemical and Biological Engineering, Zhejiang University)
  • Received : 2014.02.03
  • Accepted : 2014.07.08
  • Published : 2014.11.28

Abstract

Flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) can utilize a variety of external electron acceptors and also has stricter substrate specificity than any other glucose oxidoreductases, which makes it the ideal diagnostic enzyme in the field of glucose biosensors. A gene coding for a hypothetical protein, similar to glucose oxidase and derived from Aspergillus terreus NIH2624, was overexpressed in Pichia pastoris GS115 under the control of an AOX1 promoter with a level of 260,000 U/l in the culture supernatant after fed-batch cultivation for 84 h. After a three-step purification protocol that included isopropanol precipitation, affinity chromatography, and a second isopropanol precipitation, recombinant FAD-GDH was purified with a recovery of 65%. This is the first time that isopropanol precipitation has been used to concentrate a fermentation supernatant and exchange buffers after affinity chromatography purification. The purified FAD-GDH exhibited a broad and diffuse band between 83 and 150 kDa. The recombinant FAD-GDH was stable across a wide pH range (3.5 to 9.0) with maximum activity at pH 7.5 and $55^{\circ}C$. In addition, it displayed very high thermal stability, with a half-life of 82 min at $60^{\circ}C$. These characteristics indicate that FAD-GDH will be useful in the field of glucose biosensors.

Keywords

References

  1. Aiba H. 2007. Novel glucose dehydrogenase. US Patent No. 2007/0105174.
  2. Alwan A. 2011. Global Status Report on Noncommunicable Diseases 2010. World Health Organization.
  3. Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan Y, Yao S. 2013. Recent advances in electrochemical glucose biosensors: a review. RSC Advances. 3: 4473-4479. https://doi.org/10.1039/c2ra22351a
  4. Danaei G, Finucane M, Lu Y, Singh G, Cowan M, Paciorek C, et al. 2011. Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose). National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 378: 31-40. https://doi.org/10.1016/S0140-6736(11)60679-X
  5. Dokter P, Frank J, Duine J. 1986. Purification and characterization of quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus LMD 79.41. Biochem. J. 239: 163-167. https://doi.org/10.1042/bj2390163
  6. Dong YP, Huang L, Chu XF, Pei LZ. 2013. An amperometric glucose biosensor based on the immobilization of glucose oxidase on the $CuGeO_3$ nanowire modified electrode. Russ. J. Electrochem. 49: 571-576. https://doi.org/10.1134/S1023193513060037
  7. Goossens KV, De Greve H , Willaert RG. 2013. Cloning, expression, and purification of the N-terminal domain of the Flo1 flocculation protein from Saccharomyces cerevisiae in Pichia pastoris. Protein Expr. Purif. 88: 114-119. https://doi.org/10.1016/j.pep.2012.12.001
  8. Han Y-J, Wang K-H, Lai J-Y, Liu Y-L. 2014. Hydrophilic chitosan-modified polybenzoimidazole membranes for pervaporation dehydration of isopropanol aqueous solutions. J. Memb. Sci. 463: 17-23. https://doi.org/10.1016/j.memsci.2014.03.052
  9. Hang TT, Quyen DT, Dao TT, Nguyen SLT. 2012. Cloning, high-level expression, purification, and properties of a novel endo-beta-1,4-mannanase from Bacillus subtilis G1 in Pichia pastoris. J. Microbiol. Biotechnol. 22: 331-338. https://doi.org/10.4014/jmb.1106.06052
  10. Heller A, Feldman B. 2008. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108: 2482-2505. https://doi.org/10.1021/cr068069y
  11. Hoa T, Quyen DT, Nghiem NM, Vu TD. 2011. Cloning, expression, purification, and properties of an endoglucanase gene (Glycosyl Hydrolase Family 12) from Aspergillus niger VTCC-F021 in Pichia pastoris. J. Microbiol. Biotechnol. 21: 1012-1020. https://doi.org/10.4014/jmb.1104.04030
  12. Hua D, Ong YK, Wang Y, Yang T, Chung T-S. 2014. ZIF-90/ P84 mixed matrix membranes for pervaporation dehydration of isopropanol. J. Memb. Sci. 453: 155-167. https://doi.org/10.1016/j.memsci.2013.10.059
  13. Kitabayashi M, Tsuji Y, Kawaminami H, Kishimoto T, Nishiya Y. 2010. Method for highly expressing recombinant glucose dehydrogenase derived from filamentous fungi. Patent No. 7,741,100.
  14. Krishna R, Chandra S, Bardhan N, Salimian M, Yang Y, Titus E, et al. 2013. Design of an amperometric glucose biosensor based on glucose oxidase/arginated-$Fe_3O_4$/glassy carbon electrode. Sci. Adv. Mater. 5: 333-340. https://doi.org/10.1166/sam.2013.1462
  15. Li P, Anumanthan A, Gao X-G, Ilangovan K, Suzara VV, Duzgune N, Renugopalakrishnan V. 2007. Expression of recombinant proteins in Pichia pastoris. Appl. Biochem. Biotechnol. 142: 105-124. https://doi.org/10.1007/s12010-007-0003-x
  16. Li R, Xie C, Zhang Y, Li B, Donelan W, Li S, et al. 2014. Expression of recombinant human IL-4 in Pichia pastoris and relationship between its glycosylation and biological activity. Protein Expr. Purif. 96: 1-7. https://doi.org/10.1016/j.pep.2014.01.005
  17. Liu Y, Pan J, Wei P, Zhu J, Huang L, Cai J, Xu Z. 2012. Efficient expression and purification of recombinant alcohol oxidase in Pichia pastoris. Biotechnol. Bioprocess Eng. 17: 693-702. https://doi.org/10.1007/s12257-011-0660-z
  18. Monosik R, Stred'ansky M, Sturdik E. 2012. Application of electrochemical biosensors in clinical diagnosis. J. Clin. Lab. Anal. 26: 22-34. https://doi.org/10.1002/jcla.20500
  19. Monosik R, Streansky M, Luspai K, Magdolen P, Sturdik E. 2012. Amperometric glucose biosensor utilizing FAD-dependent glucose dehydrogenase immobilized on nanocomposite electrode. Enzyme Microb. Technol. 50: 227-232. https://doi.org/10.1016/j.enzmictec.2012.01.004
  20. Mori K, Nakajima M, Kojima K, Murakami K, Ferri S, Sode K. 2011. Screening of Aspergillus-derived FAD-glucose dehydrogenases from fungal genome database. Biotechnol. Lett. 33: 2255-2263. https://doi.org/10.1007/s10529-011-0694-5
  21. Omura H, Sanada H, Yada T, Atsumi A, Morita T, Ishimaru E. 2012. Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same. US Patent No. 8691547 B2.
  22. Razumiene J, Gureviciene V, Sakinyte I, Barkauskas J, Petrauskas K, Baronas R. 2013. Modified SWCNTs for reagentless glucose biosensor: electrochemical and mathematical characterization. Electroanalysis 25: 166-173. https://doi.org/10.1002/elan.201200383
  23. Schmourlo G, Mendonca-Filho RR, Alviano CS, Costa SS. 2005. Screening of antifungal agents using ethanol precipitation and bioautography of medicinal and food plants. J. Ethnopharmacol. 96: 563-568. https://doi.org/10.1016/j.jep.2004.10.007
  24. Strack G, Babanova S, Farrington KE, Luckarift HR, Atanassov P, Johnson GR. 2013. Enzyme-modified buckypaper for bioelectrocatalysis. J. Electrochem. Soc. 160: G3178-G3182. https://doi.org/10.1149/2.028307jes
  25. Sygmund C, Klausberger M, Felice AK, Ludwig R. 2011. Reduction of quinones and phenoxy radicals by extracellular glucose dehydrogenase from Glomerella cingulata suggests a role in plant pathogenicity. Microbiology 157: 3203-3212. https://doi.org/10.1099/mic.0.051904-0
  26. Sygmund C, Staudigl P, Klausberger M, Pinotsis N, Djinovi- Carugo K, Gorton L, et al. 2011. Heterologous overexpression of Glomerella cingulata FAD-dependent glucose dehydrogenase in Escherichia coli and Pichia pastoris. Microb. Cell Fact. 10: 1-9. https://doi.org/10.1186/1475-2859-10-1
  27. Tang YP, Widjojo N, Chung TS, Weber M, Maletzko C. 2013. Nanometric thin skinned dual-layer hollow fiber membranes for dehydration of isopropanol. AIChE J. 59: 2943-2956. https://doi.org/10.1002/aic.14067
  28. Thongboonkerd V, Mcleish KR, Arthur JM, Klein JB. 2002. Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney Int. 62: 1461-1469. https://doi.org/10.1111/j.1523-1755.2002.kid565.x
  29. Tsuji Y, Kitabayashi M, Kishimoto T, Nishiya Y. 2010. Glucose dehydrogenase from Aspergillus oryzae. US Patent No. 7,655,130 B2.
  30. Tsuya T, Ferri S, Fujikawa M, Yamaoka H, Sode K. 2006. Cloning and functional expression of glucose dehydrogenase complex of Burkholderia cepacia in Escherichia coli. J. Biotechnol. 123: 127-136. https://doi.org/10.1016/j.jbiotec.2005.10.017
  31. Witt S, Singh M, Kalisz HM. 1998. Structural and kinetic properties of nonglycosylated recombinant Penicillium amagasakiense glucose oxidase expressed in Escherichia coli. Appl. Environ. Microbiol. 64: 1405-1411.
  32. Yu Y, Wei P, Zhu X, Huang L, Cai J, Xu Z. 2012. High-level production of soluble pyrroloquinoline quinone-dependent glucose dehydrogenase in Escherichia coli. Eng. Life Sci. 12: 574-582. https://doi.org/10.1002/elsc.201100224
  33. Zafar MN, Beden N, Leech D, Sygmund C, Ludwig R, Gorton L. 2012. Characterization of different FAD-dependent glucose dehydrogenases for possible use in glucose-based biosensors and biofuel cells. Anal. Bioanal. Chem. 402: 2069- 2077. https://doi.org/10.1007/s00216-011-5650-7
  34. Zafar MN, Wang X, Sygmund C, Ludwig R, Leech D, Gorton L. 2011. Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials. Anal. Chem. 84: 334-341.
  35. Zhu L, Deng C, Chen P, You X-D, Su H-B, Yuan Y-H, Zhu M-F. 2014. Glucose oxidase biosensors based on carbon nanotube non-woven fabrics. Carbon 67: 795-796.

Cited by

  1. Thermostable FAD-dependent Glucose Dehydrogenases from Thermophilic Filamentous Fungus Thermoascus aurantiacus vol.84, pp.5, 2016, https://doi.org/10.5796/electrochemistry.84.342
  2. Production of Industrial Enzymes via Pichia pastoris as a Cell Factory in Bioreactor: Current Status and Future Aspects vol.40, pp.3, 2021, https://doi.org/10.1007/s10930-021-09968-7
  3. Sensitive electrochemical immunosensor using a bienzymatic system consisting of β-galactosidase and glucose dehydrogenase vol.146, pp.12, 2014, https://doi.org/10.1039/d1an00562f