DOI QR코드

DOI QR Code

Correlation between pr1 and pr2 Gene Content and Virulence in Metarhizium anisopliae Strains

  • Rosas-Garcia, Ninfa M. (Laboratorio de Biotecnologia Ambiental, Centro de Biotecnologia Genomica-Instituto Politecnico Nacional) ;
  • Avalos-de-Leon, Osvaldo (Laboratorio de Biotecnologia Ambiental, Centro de Biotecnologia Genomica-Instituto Politecnico Nacional) ;
  • Villegas-Mendoza, Jesus M. (Laboratorio de Biotecnologia Ambiental, Centro de Biotecnologia Genomica-Instituto Politecnico Nacional) ;
  • Mireles-Martinez, Maribel (Laboratorio de Biotecnologia Ambiental, Centro de Biotecnologia Genomica-Instituto Politecnico Nacional) ;
  • Barboza-Corona, J.E. (University of Guanajuato, Life Science Division, Food Department) ;
  • Castaneda-Ramirez, J.C. (University of Guanajuato, Life Science Division, Food Department)
  • Received : 2014.04.24
  • Accepted : 2014.07.18
  • Published : 2014.11.28

Abstract

Metarhizium anisopliae is a widely studied model to understand the virulence factors that participate in pathogenicity. Proteases such as subtilisin-like enzymes (Pr1) and trypsin-like enzymes (Pr2) are considered important factors for insect cuticle degradation. In four M. anisopliae strains (798, 6342, 6345, and 6347), the presence of pr1 and pr2 genes, as well as the enzymatic activity of these genes, was correlated with their virulence against two different insect pests. The 11 pr1 genes (A, B, C, D, E, F, G, H, I, J, and K) and pr2 gene were found in all strains. The activity of individual Pr1 and Pr2 proteases exhibited variation in time (24, 48, 72, and 96 h) and in the presence or absence of chitin as the inductor. The highest Pr1 enzymatic activity was shown by strain 798 at 48 h with chitin. The highest Pr2 enzymatic activity was exhibited by the 6342 and 6347 strains, both grown with chitin at 24 and 48 h, respectively. Highest mortality on S. exigua was caused by strain 6342 at 48 h, and strains 6342, 6345, and 6347 caused the highest mortality 7 days later. Mortality on Prosapia reached 30% without variation. The presence of subtilisin and trypsin genes and the activity of these proteases in M. anisopliae strains cannot be associated with the virulence against the two insect pests. Probably, subtilisin and trypsin enzyme production is not a vital factor for pathogenicity, but its contribution is important to the pathogenicity process.

Keywords

References

  1. Bagga S, Hu G, Screen SE, St. Leger RJ. 2004. Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene 324: 159-169. https://doi.org/10.1016/j.gene.2003.09.031
  2. B arboza-Corona JE, Ortiz-Rodriguez T, de la Fuente-Salcido N, Ibarra J, Bideshi DK, Salcedo-Hernández R. 2009. Hyperproduction of chitinase influences crystal toxin synthesis and sporulation of Bacillus thuringiensis. Antonie Van Leuwenhoek. 96: 31-42. https://doi.org/10.1007/s10482-009-9332-9
  3. Bi dochka MJ, Khachatourians GG. 1990. Identification of Beauveria bassiana extracellular protease as a virulence factor in pathogenicity toward the migratory grasshopper, Melanopus sanguinipes. J. Invertebr. Pathol. 56: 362-370. https://doi.org/10.1016/0022-2011(90)90123-N
  4. Cha mplin FR, Cheung PYK, Pekrul S, Smith RJ, Burton RL, Grula EA. 1981. Virulence of Beauveria bassiana mutants for the pecan weevil. J. Econom. Entomol. 74: 617-621. https://doi.org/10.1093/jee/74.5.617
  5. Dhar P, Kaur G. 2010. Production of cuticle-degrading proteases by Beauveria bassiana and their induction in different media. Afr. J. Biochem. Res. 4: 65-72.
  6. Fang W, Feng J, Fan Y, Zhang Y, Bidochka MJ, St. Leger RJ, Pei Y. 2009. Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. J. Invertebr. Pathol. 102: 155-159. https://doi.org/10.1016/j.jip.2009.07.013
  7. Freimoser FM, Screen S, Bagga S, Hu G, St. Leger RJ. 2003. Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology. 149: 239-247. https://doi.org/10.1099/mic.0.25761-0
  8. Gillespie JP, Bateman R, Charnley K. 1998. Role of cuticledegrading proteases in the virulence of Metarhizium spp. for the desert locust, Schistocerca gregaria. J. Invertebr. Pathol. 71: 128-137. https://doi.org/10.1006/jipa.1997.4733
  9. Raeder U, Broda P. 1985. Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbiol. 1: 17-20. https://doi.org/10.1111/j.1472-765X.1985.tb01479.x
  10. Rojas-Aveli zapa LI, Cruz-Camarillo R, Guerrero MI, Rodriguez- Vazquez R, Ibarra JE. 1999. Selection and characterization of a proteo-chitinolytic strain of Bacillus thuringiensis, able to grow in shrimp waste media. World J. Microbiol. Biotechnol. 15: 261-268.
  11. Rosas-García NM, Villegas-Mendoza JM. 2008. Bionomics of a novel species of Argyrotaenia (Lepidoptera: Tortricidae) presents in Mexican avocado orchards. Acta Zool. Mex. Nueva Ser. 24: 129-137.
  12. Sa nti L, Beys da Silva WO, Berger M, Guimaraes JA, Schrank A, Vainstein MH. 2010. Conidial surface proteins of Metarhizium anisopliae: source of activities related with toxic effects, host penetration and pathogenesis. Toxicon 55: 874. https://doi.org/10.1016/j.toxicon.2009.12.012
  13. Silva JC, Messias CL. 1986. Virulence of mutants and revertants of Metarhizium anisopliae v ar. anisopliae toward Rhodnius prolixus. J. Invertebr. Pathol. 48: 368-374. https://doi.org/10.1016/0022-2011(86)90066-2
  14. St. Leger RJ, Charnely AK, Cooper RM. 1986. Cuticledegrading enzymes of entomopathogenic fungi: synthesis in culture on cuticle. J. Invertebr. Pathol. 48: 85-95. https://doi.org/10.1016/0022-2011(86)90146-1
  15. St. Leger RJ, Charnely AK, Cooper RM. 1986b. Cuticledegrading enzymes of entomopathogenic fungi: mechanisms of interaction between pathogen enzymes and cuticle. J. Invertebr. Pathol. 47: 295-302. https://doi.org/10.1016/0022-2011(86)90099-6
  16. St. Leger RJ, Joshi L, Bidochka MJ, Rizzo NW, Roberts DW. 1996. Biochemical characterization and ultrastructural localization of two extracellular trypsins produced by Metarhizium anisopliae in infected insect cuticles. Appl. Environ. Microbiol. 62: 1257-1264.
  17. St. Leger RJ, Joshi L, Bidochka MJ, Roberts DW. 1996. Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc. Natl. Acad. Sci. USA 93: 6349-6354. https://doi.org/10.1073/pnas.93.13.6349

Cited by

  1. The influence of conidial Pr1 protease on pathogenicity potential of Metarhizium anisopliae senso latu to ticks vol.114, pp.6, 2014, https://doi.org/10.1007/s00436-015-4426-y
  2. Virulence, proteolytic and lipolytic activities of BrazilianBeauveria bassianas.l. isolates (Hypocreales: Clavicipitaceae) toRhipicephalus microplusticks (Acari: Ixodidae) vol.26, pp.2, 2016, https://doi.org/10.1080/09583157.2015.1091876
  3. Assessment of <i>Beauveria bassiana</i> and Their Enzymatic Extracts against <i>Metamasius spinolae</i> and <i>Cyclocephala lunula vol.4, pp.3, 2014, https://doi.org/10.4236/aer.2016.43010
  4. Growth substrates and caleosin-mediated functions affect conidial virulence in the insect pathogenic fungus Beauveria bassiana vol.162, pp.11, 2014, https://doi.org/10.1099/mic.0.000375
  5. Metarhizium brunneum infection dynamics differ at the cuticle interface of susceptible and tolerant morphs of Galleria mellonella vol.10, pp.1, 2014, https://doi.org/10.1080/21505594.2019.1693230
  6. Molecular evolution of Pr1 proteases depicts ongoing diversification in Metarhizium spp vol.294, pp.4, 2014, https://doi.org/10.1007/s00438-019-01546-y
  7. Principal component analysis of the biological characteristics of entomopathogenic fungi in nutrient‐limited and cuticle‐based media vol.61, pp.2, 2014, https://doi.org/10.1002/jobm.202000627
  8. Interaction between Metarhizium anisopliae and Its Host, the Subterranean Termite Coptotermes curvignathus during the Infection Process vol.10, pp.4, 2014, https://doi.org/10.3390/biology10040263