DOI QR코드

DOI QR Code

Microbial Community Diversity in Anaerobic Reactors Digesting Turkey, Chicken, and Swine Wastes

  • Ziganshina, Elvira E. (Department of Microbiology, Kazan (Volga Region) Federal University) ;
  • Belostotskiy, Dmitry E. (Department of Technologies, A.E. Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences) ;
  • Shushlyaev, Roman V. (Department of Technologies, A.E. Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences) ;
  • Miluykov, Vasili A. (Department of Technologies, A.E. Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences) ;
  • Vankov, Petr Y. (Department of Microbiology, Kazan (Volga Region) Federal University) ;
  • Ziganshin, Ayrat M. (Department of Microbiology, Kazan (Volga Region) Federal University)
  • Received : 2014.04.24
  • Accepted : 2014.07.11
  • Published : 2014.11.28

Abstract

The microbial community structures of two continuous stirred tank reactors digesting turkey manure with pine wood shavings as well as chicken and swine manure were investigated. The reactor fed with chicken/swine wastes displayed the highest organic acids concentration (up to 15.2 g/l) and ammonia concentration (up to 3.7 g/l ammonium nitrogen) and generated a higher biogas yield (up to $366ml/g_{VS}$) compared with the reactor supplied with turkey wastes (1.5-1.8 g/l of organic acids and 1.6-1.7 g/l of ammonium levels; biogas yield was up to $195ml/g_{VS}$). The microbial community diversity was assessed using both sequencing and profiling terminal restriction fragment length polymorphisms of 16S rRNA genes. Additionally, methanogens were analyzed using methyl coenzyme M reductase alpha subunit (mcrA) genes. The bacterial community was dominated by members of unclassified Clostridiales with the prevalence of specific clostridial phylotypes in each reactor, indicating the effect of the substrate type on the community structure. Of the methanogenic archaea, methanogens of the genus Methanosarcina were found in high proportions in both reactors with specific methanosarcinas in each reactor, whereas the strict hydrogenotrophic methanogens of Methanoculleus sp. were found at significant levels only in the reactor fed with chicken/swine manure (based on the analyses of 16S rRNA gene). This suggests that among methanogenic archaea, Methanosarcina species which have different metabolic capabilities, including aceticlastic and hydrogenotrophic methanogenesis, were mainly involved in anaerobic digestion of turkey wastes.

Keywords

References

  1. Abouelenien F, Fujiwara W, Namba Y, Kosseva M, Nishio N, Nakashimada Y. 2010. Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresour. Technol. 101: 6368-6373. https://doi.org/10.1016/j.biortech.2010.03.071
  2. Antoni D, Zverlov VV, Schwarz WH. 2007. Biofuels from microbes. Appl. Microbiol. Biotechnol. 77: 23-35. https://doi.org/10.1007/s00253-007-1163-x
  3. Asakawa S, Nagaoka K. 2003. Methanoculleus bourgensis, Methanoculleus olentangyi and Methanoculleus oldenburgensisare subjective synonyms. Int. J. Syst. Evol. Microbiol. 53: 1551-1552. https://doi.org/10.1099/ijs.0.02508-0
  4. Bacenetti J, Negri M, Fiala M, Gonzalez-Garcia S. 2013. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process. Sci. Total Environ. 463-464: 541-551. https://doi.org/10.1016/j.scitotenv.2013.06.058
  5. Bedard DL, Bailey JJ, Reiss BL, Jerzak GV. 2006. Development and characterization of stable sediment-free anaerobic bacterial enrichment cultures that dechlorinate aroclor 1260. Appl. Environ. Microbiol. 72: 2460-2470. https://doi.org/10.1128/AEM.72.4.2460-2470.2006
  6. Blotevogel KH, Fischer U. 1989. Transfer of Methanococcus frisius to the genus Methanosarcina as Methanosarcina frisia comb. nov. Int. J. Syst. Bacteriol. 39: 91-92. https://doi.org/10.1099/00207713-39-1-91
  7. Cardinali-Rezende J, Colturato LF, Colturato TD, Chartone- Souza E, Nascimento AM, Sanz JL. 2012. Prokaryotic diversity and dynamics in a full-scale municipal solid waste anaerobic reactor from start-up to steady-state conditions. Bioresour. Technol. 119: 373-383. https://doi.org/10.1016/j.biortech.2012.05.136
  8. Chamy R, Vivanco E, Ramos C. 2011. Anaerobic mono-digestion of turkey manure: efficient revaluation to obtain methane and soil conditioner. J. Water Resource Protect. 3: 584-589. https://doi.org/10.4236/jwarp.2011.38067
  9. Cheng TW, Chang YH, Tang SL, Tseng CH, Chiang PW, Chang KT, et al. 2012. Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano. ISME J. 6: 2280-2290. https://doi.org/10.1038/ismej.2012.61
  10. Cirne DG, Bond P, Pratt S, Lant P, Batstone DJ. 2012. Microbial community analysis during continuous fermentation of thermally hydrolysed waste activated sludge. Water Sci. Technol. 65: 7-14.
  11. Conrad R, Klose M, Noll M, Kemnitz D, Bodelier PLE. 2008. Soil type links microbial colonization of rice roots to methane emission. Glob. Chang. Biol. 14: 657-669. https://doi.org/10.1111/j.1365-2486.2007.01516.x
  12. Cook AR, Riley PW, Murdoch H, Evans PN, McDonald IR. 2007. Howardella ureilytica gen. nov., sp. nov., a grampositive, coccoid-shaped bacterium from a sheep rumen. Int. J. Syst. Evol. Microbiol. 57: 2940-2945. https://doi.org/10.1099/ijs.0.64819-0
  13. Cuetos MJ, Fernandez C, Gomez X, Moran A. 2012. Anaerobic co-digestion of swine manure with energy crop residues. Biotechnol. Bioprocess Eng. 16: 1044-1052. https://doi.org/10.1007/s12257-011-0117-4
  14. Elberson MA, Sowers KR. 1997. Isolation of an aceticlastic strain of Methanosarcina siciliae from marine canyon sediments and emendation of the species description for Methanosarcina siciliae. Int. J. Syst. Bacteriol. 47: 1258-1261. https://doi.org/10.1099/00207713-47-4-1258
  15. El-Mashad HM, Zhang R. 2010. Biogas production from codigestion of dairy manure and food waste. Bioresour. Technol. 101: 4021-4028. https://doi.org/10.1016/j.biortech.2010.01.027
  16. Garnova ES, Zhilina TN, Tourova TP, Kostrikina NA, Zavarzin GA. 2004. Anaerobic, alkaliphilic, saccharolytic bacterium Alkalibacter saccharofermentans gen. nov., sp. nov. from a soda lake in the Transbaikal region of Russia. Extremophiles 8: 309-316.
  17. Goberna M, Insam H, Franke-Whittle IH. 2009. Effect of biowaste sludge maturation on the diversity of thermophilic bacteria and archaea in an anaerobic reactor. Appl. Environ. Microbiol. 75: 2566-2572. https://doi.org/10.1128/AEM.02260-08
  18. Gungor-Demirci G, Demirer GN. 2004. Effect of initial COD concentration, nutrient addition, temperature and microbial acclimation on anaerobic treatability of broiler and cattle manure. Bioresour. Technol. 93: 109-117. https://doi.org/10.1016/j.biortech.2003.10.019
  19. Hanreich A, Heyer R, Benndorf D, Rapp E, Pioch M, Reichl U, Klocke M. 2012. Metaproteome analysis to determine the metabolically active part of a thermophilic microbial community producing biogas from agricultural biomass. Can. J. Microbiol. 58: 917-922. https://doi.org/10.1139/w2012-058
  20. Hernandez-Eugenio G, Fardeau ML, Cayol JL, Patel BK, Thomas P, Macarie H, et al. 2002. Sporanaerobacter acetigenes gen. nov., sp. nov., a novel acetogenic, facultatively sulfurreducing bacterium. Int. J. Syst. Evol. Microbiol. 52: 1217-1223. https://doi.org/10.1099/ijs.0.01992-0
  21. Heyer R, Kohrs F, Benndorf D, Rapp E, Kausmann R, Heiermann M, et al. 2013. Metaproteome analysis of the microbial communities in agricultural biogas plants. N. Biotechnol. 30: 614-622. https://doi.org/10.1016/j.nbt.2013.01.002
  22. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P. 2009. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 100: 5478-5484. https://doi.org/10.1016/j.biortech.2008.12.046
  23. Karakashev D, Batstone DJ, Angelidaki I. 2005. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl. Environ. Microbiol. 71: 331-338. https://doi.org/10.1128/AEM.71.1.331-338.2005
  24. Krause L, Diaz NN, Edwards RA, Gartemann KH, Krömeke H, Neuweger H, et al. 2008. Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. J. Biotechnol. 136: 91-101. https://doi.org/10.1016/j.jbiotec.2008.06.003
  25. Krishnamurthi S, Chakrabarti T. 2013. Diversity of bacteria and archaea from a landfill in Chandigarh, India as revealed by culture-dependent and culture-independent molecular approaches. Syst. Appl. Microbiol. 36: 56-68. https://doi.org/10.1016/j.syapm.2012.08.009
  26. Li T, Mazeas L, Sghir A, Leblon G, Bouchez T. 2009. Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions. Environ. Microbiol. 11: 889-904. https://doi.org/10.1111/j.1462-2920.2008.01810.x
  27. Liebetrau J, Reinelt T, Clemens J, Hafermann C, Friehe J, Weiland P. 2013. Analysis of greenhouse gas emissions from 10 biogas plants within the agricultural sector. Water Sci. Technol. 67: 1370-1379. https://doi.org/10.2166/wst.2013.005
  28. Maestrojuan GM, Boone DR. 1991. Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T. Int. J. Syst. Bacteriol. 41: 267-274. https://doi.org/10.1099/00207713-41-2-267
  29. Magbanua BS, Adams TT, Johnston P. 2001. Anaerobic codigestion of hog and poultry waste. Bioresour. Technol. 76: 165-168. https://doi.org/10.1016/S0960-8524(00)00087-0
  30. Merlino G, Rizzi A, Schievano A, Tenca A, Scaglia B, Oberti R, et al. 2013. Microbial community structure and dynamics in two-stage vs single-stage thermophilic anaerobic digestion of mixed swine slurry and market bio-waste. Water Res. 47: 1983-1995. https://doi.org/10.1016/j.watres.2013.01.007
  31. Niu Q, Qiao W, Qiang H, Li YY. 2013. Microbial community shifts and biogas conversion computation during steady, inhibited and recovered stages of thermophilic methane fermentation on chicken manure with a wide variation of ammonia. Bioresour. Technol. 146: 223-233. https://doi.org/10.1016/j.biortech.2013.07.038
  32. Qiao JT, Qiu YL, Yuan XZ, Shi XS, Xu XH, Guo RB. 2013. Molecular characterization of bacterial and archaeal communities in a full-scale anaerobic reactor treating corn straw. Bioresour. Technol. 143: 512-518. https://doi.org/10.1016/j.biortech.2013.06.014
  33. Smith AM, Sharma D, Lappin-Scott H, Burton S, Huber DH. 2013. Microbial community structure of a pilot-scale thermophilic anaerobic digester treating poultry litter. Appl. Microbiol. Biotechnol. 98: 2321-2334.
  34. Sowers KR, Baron SF, Ferry JG. 1984. Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl. Environ. Microbiol. 47: 971-978.
  35. Tuesorn S, Wongwilaiwalin S, Champreda V, Leethochawalit M, Nopharatana A, Techkarnjanaruk S, Chaiprasert P. 2013. Enhancement of biogas production from swine manure by a lignocellulolytic microbial consortium. Bioresour. Technol. 144: 579-586. https://doi.org/10.1016/j.biortech.2013.07.013
  36. Wan S, Sun L, Douieb Y, Sun J, Luo W. 2013. Anaerobic digestion of municipal solid waste composed of food waste, wastepaper, and plastic in a single-stage system: performance and microbial community structure characterization. Bioresour. Technol. 146: 619-627. https://doi.org/10.1016/j.biortech.2013.07.140
  37. Wang G, Gavala HN, Skiadas IV, Ahring BK. 2009. Wet explosion of wheat straw and codigestion with swine manure: effect on the methane productivity. Waste Manag. 29: 2830-2835. https://doi.org/10.1016/j.wasman.2009.07.004
  38. Wang W, Xie L, Luo G, Zhou Q, Angelidaki I. 2013. Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading. Bioresour. Technol. 146: 234-239. https://doi.org/10.1016/j.biortech.2013.07.049
  39. Weiss A, Jérôme V, Freitag R, Mayer HK. 2008. Diversity of the resident microbiota in a thermophilic municipal biogas plant. Appl. Microbiol. Biotechnol. 81: 163-173. https://doi.org/10.1007/s00253-008-1717-6
  40. Wirth R, Kovacs E, Maroti G, Bagi Z, Rakhely G, Kovacs KL. 2012. Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol. Biofuels 5: 41-57. https://doi.org/10.1186/1754-6834-5-41
  41. Yang SH, Hong SH, Cho SB, L im J S, B ae SE, A hn H, L ee EY. 2012. Characterization of microbial community in the leachate associated with the decomposition of entombed pigs. J. Microbiol. Biotechnol. 22: 1330-1335. https://doi.org/10.4014/jmb.1205.05006
  42. Yue ZB, Li WW, Yu HQ. 2013. A pplication of r umen microorganisms for anaerobic bioconversion of lignocellulosic biomass. Bioresour. Technol. 128: 738-744. https://doi.org/10.1016/j.biortech.2012.11.073
  43. Ziganshin AM, Liebetrau J, Proter J, Kleinsteuber S. 2013. Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Appl. Microbiol. Biotechnol. 97: 5161-5174. https://doi.org/10.1007/s00253-013-4867-0
  44. Ziganshin AM, Schmidt T, Scholwin F, Ilinskaya ON, Harms H, Kleinsteuber S. 2011. Bacteria and archaea involved in anaerobic digestion of distillers grains with solubles. Appl. Microbiol. Biotechnol. 89: 2039-2052. https://doi.org/10.1007/s00253-010-2981-9
  45. Ziganshin AM, Ziganshina EE, Pröter J, Kleinsteuber S, Ilinskaya ON. 2012. Methanogenic community dynamics during anaerobic utilization of agricultural wastes. Acta Naturae 4: 91-97.
  46. Ziganshina EE, Bagmanova AR, Khilyas IV, Ziganshin AM. 2014. Assessment of a biogas-generating microbial community diversity in a pilot-scale anaerobic reactor. J. Biosci. Bioeng. 117: 730-736. https://doi.org/10.1016/j.jbiosc.2013.11.013
  47. Zinder SH, Sowers KR, Ferry JG. 1985. Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methaneproducing bacterium. Int. J. Syst. Bacteriol. 35: 522-523. https://doi.org/10.1099/00207713-35-4-522

Cited by

  1. Comparative Analysis of Bacterial Communities Associated with Healthy and Inflamed Peri-implant Tissues vol.6, pp.4, 2014, https://doi.org/10.1007/s12668-016-0270-5
  2. Different substrates and starter inocula govern microbial community structures in biogas reactors vol.37, pp.11, 2014, https://doi.org/10.1080/09593330.2015.1118559
  3. Comparative Analysis of Methanogenic Communities in Different Laboratory-Scale Anaerobic Digesters vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/3401272
  4. Bacterial communities inhabiting toxic industrial wastewater generated during nitrocellulose production vol.71, pp.1, 2014, https://doi.org/10.1515/biolog-2016-0014
  5. Bacterial Communities Associated with Atherosclerotic Plaques from Russian Individuals with Atherosclerosis vol.11, pp.10, 2014, https://doi.org/10.1371/journal.pone.0164836
  6. Fungal, Bacterial, and Archaeal Diversity in the Digestive Tract of Several Beetle Larvae (Coleoptera) vol.2018, pp.None, 2014, https://doi.org/10.1155/2018/6765438
  7. A new combination of substrates: biogas production and diversity of the methanogenic microorganisms vol.13, pp.1, 2014, https://doi.org/10.1515/biol-2018-0017
  8. Comparison of intestinal bacterial and fungal communities across various xylophagous beetle larvae (Coleoptera: Cerambycidae) vol.8, pp.None, 2014, https://doi.org/10.1038/s41598-018-27342-z
  9. Effect of Increasing Amounts of Ammonium Nitrogen Induced by Consecutive Mixture of Poultry Manure and Cattle Slurry on the Microbial Community during Thermophilic Anaerobic Digestion vol.29, pp.12, 2019, https://doi.org/10.4014/jmb.1909.09023
  10. Impact of inoculum acclimation on energy recovery and investigation of microbial community changes during anaerobic digestion of the chicken manure vol.41, pp.1, 2014, https://doi.org/10.1080/09593330.2018.1551434
  11. Influence of Granular Activated Carbon on Anaerobic Co-Digestion of Sugar Beet Pulp and Distillers Grains with Solubles vol.8, pp.10, 2014, https://doi.org/10.3390/pr8101226
  12. Black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), and house fly, Musca domestica L. (Diptera: Muscidae), larvae reduce livestock manure and possibly associated nutrients: An assessme vol.282, pp.None, 2014, https://doi.org/10.1016/j.envpol.2021.116976