DOI QR코드

DOI QR Code

Multi-Scale Contact Analysis Between Net and Numerous Particles

그물망과 대량입자의 멀티 스케일 접촉해석

  • Jun, Chul Woong (Graduate School of Mechatronics Engineering, Pukyong Nat'l Univ.) ;
  • Sohn, Jeong Hyun (Dept. of Mechanical and Automotive Engineering, Pukyong Nat'l Univ.)
  • 전철웅 (부경대학교 메카트로닉스공학과) ;
  • 손정현 (부경대학교 기계자동차공학과)
  • Received : 2013.05.08
  • Accepted : 2013.11.15
  • Published : 2014.01.01

Abstract

Graphics processing units (GPUs) are ideal for solving problems involving parallel data computations. In this study, the GPU is used for effectively carrying out a multi-body dynamic simulation with particle dynamics. The Hilber-Hushes-Taylor (HHT) implicit integration algorithm is used to solve the integral equations. For detecting collisions among particles, the spatial subdivision algorithm and discrete-element methods (DEM) are employed. The developed program is verified by comparing its results with those of ADAMS. The numerical efficiencies of the serial program using the CPU and the parallel program using the GPU are compared in terms of the number of particles, and it is observed that when the number of particles is greater, more computing time is saved by using the GPU. In the present example, when the number of particles is 1,300, the computational speed of the parallel analysis program is about 5 times faster than that of the serial analysis program.

그래픽 처리장치(GPU)는 병렬적인 정보를 포함하는 문제를 해결하는데 이상적이다. 본 연구에서는 GPU 는 입자동역학과 함께 다물체 동역학 시뮬레이션을 효율적으로 수행하기 위해 사용되었다. 수치계산을 위해서 HHT 암시적 적분 알고리즘이 사용되었다. 입자들 사이의 접촉을 판별하기 위해서 공간 분할 알고리즘과 입자 거동 해석법으로 이산 요소법(DEM)이 사용되었다. 개발된 다물체 동역학 프로그램은 해는 ADAMS 프로그램의 결과와 비교 검증하였다. CPU 기반의 순차해석 프로그램과 GPU 기반 병렬 프로그램은 입자의 수에 따른 수치계산 효율성을 알아보기 위해 서로 비교되었으며, 입자의 수가 많아질수록 계산시간은 단축되었다. 본 예제에서 입자의 수가 1,300 개일 때, 순차 해석 프로그램보다 병렬 프로그램이 약 5 배 가량 빠른 계산 속도를 보였다.

Keywords

References

  1. NVIDIA $CUDA^{TM}$, 2011, "NVIDIA CUDA C Programming Guide," Version 4.1,
  2. NVIDIA CUDATM, 2011, "CUDA Toolkit 4.1 CUBLAS Library," PG-05326-041_v01.
  3. Negrut, D., Tasora, A., Anitescu, M., Mazhar, H., Heyn T. and Pazouki A., 2010, "Solving Large Multibody Dynamics Problems on the GPU," Math, and Comp Science Division, ANL/MCS-P1777-0710.
  4. Jeong, H. Y., Jun, C. W. and Sohn, J. H., 2013, "GPU-Based Collision Analysis Between a Multibody System and Numerous Particles," Vol. 27, No. 4, pp 973-980. https://doi.org/10.1007/s12206-013-0226-4
  5. Tupy, M., 2010, "A Study on the Dynamics of Granular Material with a Comparison of DVI and DEM Approaches," UNIVERSITY OF WISCONSIN-MADISON.
  6. Grand, S. L., 2007, "Broad-Phase Collision detection with CUDA," Addison Wesley.
  7. Mio, H., Shimosaka, A., Shirakawa, Y. and Hidaka, J., 2005, "Optimum Cell Size for Contact Detection in the Algorithm of the Discrete Element Method," Journal of Chemical Engineering of Japan, Vol. 38, No. 12, pp. 969-975. https://doi.org/10.1252/jcej.38.969
  8. Nikravesh, P.E., 1988, "Computer-Aided Analysis of Mechanical Systems," Prentice-Hall International Inc.
  9. Shabana, A.A., 2011, "Computational Dynamics 2Ed," Wiley-Interscience.
  10. Schafer, N. and Negrut, D., 2009, "On the Potential of Implicit Integration Methods for Molecular Dynamics Simulation," Journal of Computational Physics.
  11. Schafer, N. and Negrut, D., "On the Potential of Implicit Integration Methods for Molecular Dynamics Simulation," pp.5-6.
  12. Negrut D., Ottarsson G., Rampalli R. and Sajdak A., 2006, "On an Implementation of the Hilber-Hushes- Taylor Method in the Context of Index 3 Differential- Algebraic Equations of Multibody Dynamics," DET2005-85096.
  13. MSC Software, "ADAMS help," MSC Software.
  14. EM Photonics, Inc., 2011, "CULA Reference Manual Release R13(CUDA4.0).
  15. Sarkar, A., 2009, "Discrete Element Method(DEM) Course Module," PHARMAHUB, Purdue University, Lecture 7-9.
  16. Sanders, J. and Kandrot, E., 2011, "CUDA by Examples : An Introduction to General-Purpose GPU Programming," Addison Wesley.