DOI QR코드

DOI QR Code

Tuning Method of the Membership Function for FLC using a Gradient Descent Algorithm

Gradient Descent 알고리즘을 이용한 퍼지제어기의 멤버십함수 동조 방법

  • Choi, Hansoo (Department of Electronic Engineering, Chosun University)
  • 최한수 (조선대학교 전자공학과)
  • Received : 2014.10.22
  • Accepted : 2014.12.11
  • Published : 2014.12.31

Abstract

In this study, the gradient descent algorithm was used for FLC analysis and the algorithm was used to represent the effects of nonlinear parameters, which alter the antecedent and consequence fuzzy variables of FLC. The controller parameters choose the control variable by iteration for gradient descent algorithm. The FLC consists of 7 membership functions, 49 rules and a two inputs - one output system. The system adopted the Min-Max inference method and triangle type membership function with a 13 quantization level.

본 연구에서는 gradient descent 알고리즘을 퍼지제어기의 동조를 위해 멤버십함수의 폭을 해석하는데 이용하였으며 이 해석은 퍼지 제어규칙의 전건부와 후건부 퍼지변수들을 변화시켜 보다 개선된 제어 효과를 얻기 위해 사용된다. 이 방법은 제어기의 파라미터들이 gradient descent 알고리즘의 반복 과정에서 제어변수를 선택하는 것이다. 본 논문에서는 궤환 목표치 제어를 위해 7개의 멤버십함수와 49개의 규칙 그리고 2개의 입력과 1개의 출력을 갖는 FLC을 사용하였다. 추론은 Min-Max 합성법을 이용하였고 멤버십함수는 13개의 양자화 레벨에 대한 삼각 형태를 채택하였다.

Keywords

References

  1. D. Jabri, K. Guelton, N. Manamanni,A. Jaadari, andC. C.Duong, "Robust stabilization of nonlinear systems based on a switched fuzzy control law,"J. Control Eng. Appl. Informat., vol. 14, no. 2, pp. 40--49, 2012.
  2. M. Liu, X. Cao, and P. Shi, "Fault estimation and tolerant control for fuzzy stochastic systems," IEEE Trans. Fuzzy Syst., vol. 21, no. 2, pp. 221-229, Apr. 2013. DOI: http://dx.doi.org/10.1109/TFUZZ.2012.2209432
  3. C. H. Wang and J. S. Wen, "On the equivalence of a table lookup (TL) technique and fuzzy neural network (FNN) with block pulse membership functions (BPMFs) and its application to water injection control of an automobile," IEEE Trans Syst., Man, Cybern. C, Appl. Rev., vol. 38, no. 4, pp. 574-580, Jul. 2008. DOI: http://dx.doi.org/10.1109/TSMCC.2008.923869
  4. Lin SC and Chen YY. "Design of adaptive fuzzy sliding mode for nonlinear system control" pp. 35-39, Orlando, Wiley, New York
  5. Jaradat, M.A. ; Awad, M.I. ; El-Khasawneh, B.S. "Genetic-Fuzzy Sliding Mode Controller for a DC Servomotor system," Mechatronics and its Applications (ISMA), 2012 8th International Symposium on DOI: 10.1109/ISMA.2012.6215186 Publication Year: 2012 , Page(s): 1 - 6 Cited by: Papers (2) DOI: http://dx.doi.org/10.1109/ISMA.2012.6215186
  6. F. L. Chung, Z. H. Deng, and S. T.Wang, "From minimum enclosing ball to fast fuzzy inference system training on large data sets," IEEE Trans. Fuzzy Syst., vol. 17, no. 1, pp. 173-184, Feb. 2009. DOI: http://dx.doi.org/10.1109/TFUZZ.2008.2006620
  7. Y. J. Liu, W. Wang, S. C. Tong, and Y. S. Liu, "Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters," IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 40, no. 1, pp. 170-184, Jan., 2010. DOI: http://dx.doi.org/10.1109/TSMCA.2009.2030164
  8. C. S. Chen, "Robust self-organizing neural-fuzzy control with uncertainty observer for MIMO nonlinear systems," IEEE Trans. Fuzzy Syst., vol. 19, no. 4, pp. 694-706, Aug. 2011. DOI: http://dx.doi.org/10.1109/TFUZZ.2011.2136349
  9. Nomura H., I. Hayashi, N. Wakami, A self-tuning method of fuzzy control by descent method, Proc. of the IFSA'91, pp. 155-158, Brussels 1991.
  10. Ah. Habbi, M. Zelmat, Fuzzy Logic Based Gradient Descent Method with Application to a PI-type Fuzzy Controller Tuning: New Results, pp.93-97, 3th International Symposium on Computational Intelligence and Intelligent Informatics - ISCIII2007.Agadir, Morocco.March 28-30, 2007.