DOI QR코드

DOI QR Code

Sensor-Based Path Planning for Planar Two-identical-Link Robots by Generalized Voronoi Graph

일반화된 보로노이 그래프를 이용한 동일 두 링크 로봇의 센서 기반 경로계획

  • Shao, Ming-Lei (Department of Mechanical Engineering, Hanyang University) ;
  • Shin, Kyoo-Sik (Department of Robot Engineering, Hanyang University)
  • Received : 2014.11.17
  • Accepted : 2014.12.11
  • Published : 2014.12.31

Abstract

The generalized Voronoi graph (GVG) is a topological map of a constrained environment. This is defined in terms of workspace distance measurements using only sensor-provided information, with a robot having a maximum distance from obstacles, and is the optimum for exploration and obstacle avoidance. This is the safest path for the robot, and is very significant when studying the GVG edges of highly articulated robots. In previous work, the point-GVG edge and Rod-GVG were built with point robot and rod robot using sensor-based control. An attempt was made to use a higher degree of freedom robot to build GVG edges. This paper presents GVG-based a new local roadmap for the two-link robot in the constrained two-dimensional environment. This new local roadmap is called the two-identical-link generalized Voronoi graph (L2-GVG). This is used to explore an unknown planar workspace and build a local roadmap in an unknown configuration space $R^2{\times}T^2$ for a planar two-identical-link robot. The two-identical-link GVG also can be constructed using only sensor-provided information. These results show the more complex properties of two-link-GVG, which are very different from point-GVG and rod-GVG. Furthermore, this approach draws on the experience of other highly articulated robots.

일반화된 보로노이 그래프(GVG)는 자율 주행 로봇을 위한 일종의 로드맵으로서. GVG는 선서에다 받은 정보만 사용하여 작업 공간거리의 계산에 따라 정의를 한다. 로봇은 장애물까지의 최대 거리를 검출할 수 있기 때문에 포인트 뷰에서 GVG의 최적은 정출 몇 장애물 회피이다. 로봇의 경우에는, GVG는 가장 안전적인 길이라고 할 수 있다. 따라서 높이 링크 로봇의 GVG가장거리에 대한 연구가 매우 필요하다. 기존 연구에서 점(point) 로봇을 위한 GVG(point-GVG)와 로드 로봇을 위한 GVG(rod-GVG)가 발표되었다. 이 논문은 더 고차원의 로봇인 두 개의 동일 링크가 관절로 연결된(tow-identical-link; L2) 로봇을 위한 GVG(L2-GVG)에 대한 연구이다. L2-GVG는 미지의 평면 작업공간에서 움직이는 L2 로봇의 짜임새 공간 $R^2{\times}T^2$상에서 로드맵을 생성하되, 이전 연구와 마찬가지로 지역적 센서 정보만을 이용해 로봇이 스스로 주행하면서 맵을 만들어 낸다. 이 논문에서는 이전 point-GVG와 rod-GVG에서는 나타나지 않는, 관절이 존재하여 생기는 복잡한 특성에 대해서 분석한다. 이는 다관절 로봇으로의 확장에 중요한 초석이 될 것이다.

Keywords

References

  1. S. R. Ahuja, K. D. Hong, K. S. Hong, "The Rapport Multimedia Conferencing System: A Software Overviews", Proc. of 2nd IEEE Conference on Computer Workstations, pp. 52-58, March, 1988. DOI: http://dx.doi.org/10.1109/COMWOR.1988.4800
  2. Choset H, Burdick J. Sensor-based exploration: the hierarchical generalized Voronoi graph. Int J Robotics Res, Vol. 19(2), pp. 6-125, 2000
  3. Nagatani K, Choset H. Toward robust sensor based exploration by constructing reduced generalized Voronoi graph. In: IEEE/RSJ international conference on intelligent robots and systems, Kyongju, Korea, pp. 1687-1692, 1999. DOI: http://dx.doi.org/10.1109/IROS.1999.811721
  4. Nagatani K, Iwai Y, Tanaka Y. Sensor based navigation for car-like mobile robots using generalized Voronoi. Adv Robotics, Vol, 17(5), pp. 385-401, 2003. DOI: http://dx.doi.org/10.1163/15685530360663409
  5. Kenneth E Hoff III, John Keyser, Ming Lin, Dinesh Manocha, and Tim Culver. Fast computation of generalized voronoi diagrams using graphics hardware. In Proceedings of the 26th annual conference on Computer graph- ics and interactive techniques, pp. 277-286, 1999.
  6. Kenneth Hoff III, Tim Culver, John Keyser, Ming C Lin, and Dinesh Manocha. Interactive motion planning using hardware-accelerated com-putation of generalized voronoi diagrams. In Robotics and Automation, Proceedings. ICRA'00. IEEE International Conference on, Vol. 3, pp. 2931-2937, 2000. DOI: http://dx.doi.org/10.1109/ROBOT.2000.846473
  7. Charles Pisula, K Hoff, Ming Lin, and Dinesh Manocha. Randomized path planning for a rigid body based on hardware accelerated voronoi sampling. In Proc. Workshop on Algorithmic Foundation of Robotics, volume 18. Cite-seer, 2000.
  8. Mark Foskey, Maxim Garber, Ming C Lin, and Dinesh Manocha. A voronoi-based hybrid motion planner. In Intelligent Robots and Systems, Proceedings. IEEE/RSJ International Conference on, vol.1, pp. 55-60, 2001 DOI: http://dx.doi.org/10.1109/IROS.2001.973336
  9. Choset H, Lee JY. Sensor-based construction of a retract-like structure for a planar rod robot. IEEE Trans Robotics Automation, Vol. 17(4), pp. 435-449, 2001. DOI: http://dx.doi.org/10.1109/70.954756
  10. Lee JY, Choset H. Sensor based planning for rod shaped robots in three dimensions: piece-wise retracts of $R^3{\times}S^2$.IntJ Robotics Res, Vol. 24(5), pp. 343-383, 2005. DOI: http://dx.doi.org/10.1177/0278364905053687
  11. Lee JY, Choset H. Sensor-based exploration for convex-bodies: a new roadmap for a convex-shaped robot. In: IEEE international conference on robotics and automation, pp. 1675-1682, May 2002. DOI: http://dx.doi.org/10.1109/ROBOT.2002.1014783