DOI QR코드

DOI QR Code

폴리머 코팅층 레이저 직접묘화법을 이용한 미세패턴증착

Deposition of Micropattern using The Laser Direct Writing Method with a polymer coating layer

  • 이봉구 (영남이공대학교 기계계열)
  • Lee, Bong-Gu (Division of Mechanical Engineering, Yeungnam University College)
  • 투고 : 2014.11.04
  • 심사 : 2014.12.11
  • 발행 : 2014.12.31

초록

레이저 직접묘화방법을 이용하여 절연기판($SiO_2$)위에 미세전도성패턴을 제조하였다. 레이저 유도증착공정은 레이저빔이 금속박막에 조사되면 레이저 빔의 빛 에너지가 금속박막에 흡수되어 열에너지로 바뀌면서 열전도에 의한 열분해반응으로 기판위에 증착이 일어난다. 본 논문에서는 금속박막위에 폴리머 코팅을 하여 레이저 직접묘화공정을 적용하여 미세패턴과 3차원 마이크로 구조물 제조에 관한 연구를 수행하였다. 평균 증착율은 전반적으로 레이저출력이 높을 수록 선형적으로 증가하고, 빔 스캔 속도가 감소할수록 증착율은 증가한다는 것을 확인하였다. Polymer 코팅층을 이용하여 미세전극을 증착하여 비저항값을 측정하여, 코팅층을 사용한 경우의 전기전도도가 코팅을 하지 않은 경우보다 약 3배정도 향상되는 것을 확인할 수 있었다.

A micro-conductive pattern was fabricated on an insulating substrate ($SiO_2$) surface using a laser direct writing method. In the LIFT process, when the laser beam irradiates a thin metal film, the photon energy is absorbed by the film and converted to thermal energy, and the thermal decomposition reaction produced by the resulting heat conduction forms a deposit on the substrate. The resistivity of the micro-electrodes deposited through LIFT process with and without polymer coating was measured. The results showed that the electric conductivity of the micro-pattern and micro-structure can be increased approximatly two times when the deposited micropattern is fabricated through a LIFT process with a polymer coating, compared to the case without a polymer coating.

키워드

참고문헌

  1. J. H. Lee, J. Suh, Y. H. Han, "A Study on Fabrication of Conductor Patterns on AIN Ceramic Surface by Laser Direct Writing," J. of KSLP, Vol. 3, No. 2, pp. 25-33, 2000.
  2. B. G. Lee, J. H. Moon, "Characteristics of 3D Microstructures Fabricated using a Modified LIFT Process," metals and materials International, Vol. 16, No. 5, pp. 1019-1027, 2010. https://doi.org/10.1007/s12540-010-1224-z
  3. B. S. Shin, J. G. Kim, W. S. Chang, K. H. Whang, "Rapid manufacturing of 3D Micro-products using UV Laser Ablation and Phase-change Filling," International Journal of the Precision Engineering and Manufacturing, Vol. 7, No. 3, pp. 56-59, 2006.
  4. D. Y. Yang, T. W. Lim, S. Yong, H. J. Kong, K. S. Lee, D. P. Kim, S. H. Park, "Additive Process Using Femto-second Laser for Manufacturing 3D Nano/Micro-structures," Int. Journal of the Precision Engineering and Manufacturing, Vol. 8, No.4, pp. 63-69, 2007.
  5. H. Yamada, T. Sano, "Optimization of Laser-Induced Forward Transfer Process of Metal Thin Films," Appl. Surf. Sci. Vol. 197-198, pp. 411-415, 2002. DOI: http://dx.doi.org/10.1016/S0169-4332(02)00351-3
  6. D. A. Willis, V. Grosu, "Microdroplet Deposition by Laser Induced Forward Transfer," Appl. Phys. Let. 86, pp. 244103-3, 2005. DOI: http://dx.doi.org/10.1063/1.1944895
  7. J. Bohandy, B. F. Kim, F. J. Adrian, "Metal Deposition from a Supported Metal Film using an Excimer Laser," Journal of Applied Physics, Vol. 60, 1538-1539, 1986. DOI: http://dx.doi.org/10.1063/1.337287
  8. B. G. Lee, "Micro-Droplet Deposition by UV-Pulsed Laser Induced Forward Transfer Direct Writing Technology," Electronic materials Letters, Vol. 8, No. 6, pp. 631-637, 2012 DOI: http://dx.doi.org10.1007/s13391-012-2059-1

피인용 문헌

  1. Conductivity Pattern Manufacture Technology of Solid Surface Compound Polymer Material vol.65, pp.3, 2016, https://doi.org/10.5370/KIEEP.2016.65.3.224