DOI QR코드

DOI QR Code

Physical Properties of Cellulose Acetate Reinforced by Cellulose Nanowhisker

셀룰로스 나노휘스커 강화 셀룰로스 아세테이트 복합재료의 특성

  • Cho, Hyun Eun (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Song, Younghan (Department of Organic and Nano System Engineering, Konkuk University) ;
  • Kim, Hyungsup (Department of Organic and Nano System Engineering, Konkuk University)
  • 조현은 (건국대학교 공과대학 유기나노시스템공학과) ;
  • 송영한 (건국대학교 공과대학 유기나노시스템공학과) ;
  • 김형섭 (건국대학교 공과대학 유기나노시스템공학과)
  • Received : 2014.11.04
  • Accepted : 2014.12.04
  • Published : 2014.12.31

Abstract

Recently, nanomaterials obtained from biomass have gained attention due to their function and sustainability. Among bio-nanomaterials, cellulose nanowhisker (CNW) is one of the most potential materials for reinforcement of bioplastics due to its superior mechanical properties, biodegradability, and high aspect ratio. In the study, cellulose acetate composite was produced using CNW obtained under different conditions. There was a significant increase in the initial modulus of the composite with increasing CNW content, but there was no impact on the thermal stability.

Keywords

References

  1. A. Ragauskas, C. Williams, B. Davison, G. Britovsek, J. Cairney, C. Eckerts, W. Frederick, J. Hallett, D. Leak, C. Liotta, J. Mielenz, R. Murphy, R. Templer, and T. Tschaplinski, "The Path Forward for Biofuels and Biomaterial", Science, 2006, 311, 484-489. https://doi.org/10.1126/science.1114736
  2. A. Bledzk and J. Gassan, "Composites Reinforced with Cellulose Based Fibres", Prog Polym Sci, 1999, 24, 221-274. https://doi.org/10.1016/S0079-6700(98)00018-5
  3. J. Wang, X. Lu, P. Na, K. Lee, B. Fei, J. Xin, and J. Wu, "Polyethylenimine Coated Bacterial Cellulose Nanofiber Membrane and Application as Adsorbent and Catalyst", J Colloid Interface Sci, 2015, 440, 32-38. https://doi.org/10.1016/j.jcis.2014.10.035
  4. X. He, L. Cheng, X. Zhang, Q. Xiao, W. Zhang, and C. Lu, "Tissue Engineering Scaffolds Electrospun from Cotton Cellulose", Carbohydr Polym, 2015, 115, 485-493. https://doi.org/10.1016/j.carbpol.2014.08.114
  5. R. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, "Cellulose Nanomaterials Review : Structure, Properties and Nanocomposites", Chem Soc Rev, 2011, 40, 3941-3994. https://doi.org/10.1039/c0cs00108b
  6. B. Ranby, "Fibrous Macromolecular Systems Cellulose and Muscle: the Colloidal Properties of Cellulose Micelles", Discuss Faraday Soc, 1951, 11, 158-164. https://doi.org/10.1039/df9511100158
  7. S. J. Eichhorn, "Cellulose Nanowhiskers : Promising Materials for Advanced Applications", Soft Matter, 2011, 7, 303-315. https://doi.org/10.1039/C0SM00142B
  8. G. Siqueira, J. Bras, and A. Dufresne, "Cellulosic Bionanocomposites : A Review of Preparation Properties and Applications", Polymers, 2010, 2, 728-765. https://doi.org/10.3390/polym2040728
  9. D. Bondeson, A. Mathew, and K. Oksman, "Optimization of the Isolation of Nanocrystals from Microcrystalline Cellulose by Acid Hydrolysis", Cellulose, 2006, 13, 171-180. https://doi.org/10.1007/s10570-006-9061-4
  10. X. Dong, J. Revol, and D. Gray, "Effect of Microcrystallite Preparation Conditions on the Formation of Colloid Crystals of Cellulose", Cellulose, 1998, 5, 19-32. https://doi.org/10.1023/A:1009260511939
  11. M. Martinez-Sanz, A. Lopez-Rubio, and J. M. "Lagaron, Optimization of the Nanofabrication by Acid Hydrolysis of Bacterial Cellulose Nanowhiskers", Carbohydr Polym, 2011, 85, 228-236. https://doi.org/10.1016/j.carbpol.2011.02.021
  12. J. Yao, R. Li, J. Fei, Y. Cai, Y. Li, and J. Feng, "Cellulose Whiskers Extracted from Mulberry, A Novel Biomass Production", Carbohydr Polym, 2009, 76, 94-99. https://doi.org/10.1016/j.carbpol.2008.09.034
  13. J. Araki, M. Wada, S. Kuga, and T. Okano, "Flow Properties of Microcrystalline Cellulose Suspension Prepared by Acid Treatment of Native Cellulose", Colloids Surf, 1998, 142, 75-82. https://doi.org/10.1016/S0927-7757(98)00404-X
  14. N. Wang, E. Ding, and R. Cheng, "Thermal Degradation Behaviors of Spherical Cellulose Nanocrystals with Sulfate Groups", Polymer, 2007, 48, 3486-3493. https://doi.org/10.1016/j.polymer.2007.03.062
  15. H. Yu, Z. Qin, B. Liang, N. Liu, Z. Zhou, and L. Chen, "Facile Extraction of Thermally Stable Cellulose Nanocrystals with a High Yield of 93% through Hydrochloric Acid Hydrolysis under Hydrothermal Conditions", J Mater Chem A, 2013, 1, 3938-3944. https://doi.org/10.1039/c3ta01150j
  16. Y. Liu, H. Wang, G. Yu, Q. Yu, B. Liu, and X. Mu, "A Novel Approach for the Preparation of Nanocrystalline Cellulose by Using Phosphotungstic Acid", Carbohydr Polym, 2014, 110, 415-422. https://doi.org/10.1016/j.carbpol.2014.04.040
  17. Y. Zhou, T. Khan, J. Liu, C. Fuentes-Hernandez, J. Shim, E. Najafabadi, J. Youngblood, R. Moon, and B. Kippelen, "Efficient Recyclable Organic Solar Cells on Cellulose Nanocrystal Substrates with a Conducting Polymer Top Electrode Deposited by Film-transfer Lamination", Org Electron, 2014, 15, 661-666. https://doi.org/10.1016/j.orgel.2013.12.018
  18. M. Mauriciom P. Costa, S. Haraguchi, M. Guilherme, E. Muniz, and A. Rubira, "Synthesis of a Microhydrogel Composite from Cellulose Nanowhiskers and Starch for Drug Delivery", Carbohydr Polym, 2014, 115, 715-722.
  19. N. Bitinis, R. Verdejo, J. Bras, E. Fortunati, J. Kenny, L. Torrc, and M. Lopez-Manchado, "Poly(lactic acid)/natural rubber/cellulose Nanocrystal Bionanocomposites Part I. Processing and Morphology", Carbohydr Polym, 2013, 96, 611-620. https://doi.org/10.1016/j.carbpol.2013.02.068
  20. M. Arrieta, E. Fortunati, F. Cominici, E. rayon, J. Lopez, and J. Kenny, "Multifunctional PLA-PHB/cellulose Nanocrystal Films: Processing, Structural and Thermal Properties", Carbohydr Polym, 2014, 107, 16-24. https://doi.org/10.1016/j.carbpol.2014.02.044
  21. Z. Yang, W. Wang, Z. Shao, H. Zhu, Y. Li, and F. Wang, "The Transparency and Mechanical Properties of Cellulose Acetate Nanocomposites Using Cellulose Nanowhiskers as Fillers", Cellulose, 2013, 20, 159-168. https://doi.org/10.1007/s10570-012-9796-z