DOI QR코드

DOI QR Code

집수역 내 농업가뭄 감시를 위한 가뭄지수 개발

Drought Index Development for Agricultural Drought Monitoring in a Catchment

  • 김대준 (경희대학교 생명과학대학) ;
  • 문경환 (국립원예특작과학원 온난화대응농업연구센터) ;
  • 윤진일 (경희대학교 생명과학대학)
  • Kim, Dae-Jun (Agricultural Climatology Lab., College of Life Sciences, Kyung Hee University) ;
  • Moon, Kyung-Hwan (Natinal Institute of Horticultural & Herbal Science, RDA) ;
  • Yun, Jin I. (Agricultural Climatology Lab., College of Life Sciences, Kyung Hee University)
  • 투고 : 2014.09.27
  • 심사 : 2014.11.09
  • 발행 : 2014.12.30

초록

필지 단위 가뭄상황을 한 주 간격으로 감시함으로써 한발피해의 조기경보체계 개발과 현업서비스 구축에 기여할 목적으로 농업가뭄지수를 개발하였다. 이 지수는 토양의 물수지를 기반으로 설계되었는데, 물의 공급은 2개월 전 강수량부터 가중치를 적용하여 누적시킨 유효강수량에 의해, 물의 수요는 기준증발산에 작물계수를 적용한 실제증발산과 토양 종류에 따른 지면유출량에 의해 산정하여 토양잔류수분을 얻는다. 잔류수분량의 자연대수를 기반으로 해당 지역 기후학적 평년의 정규확률분포를 제작한 다음 임의연도, 임의기간 잔류수분량의 정규확률분포 상 위치를 검색하여 가뭄여부를 판단한다. 이 지수의 신뢰도 평가를 위해 실험포장 세 곳을 대상으로 2012년 7월부터 2013년 12월까지 잔류수분량을 계산하여 실측 토양수분과 비교한 결과 널리 쓰이는 표준강수지수에 비해 훨씬 높은 상관을 보였으며, 실제 가뭄과 더욱 근접한 경보를 발령할 수 있었다. 고해상도 전자기후도를 이용하여 소규모 시험유역에 대해 농업가뭄지수의 공간분포를 270m 해상도로 제작함으로써 필지단위 가뭄감시 가능성을 확인하였다.

Drought index can be used to implement an early warning system for drought and to operate a drought monitoring service. In this study, an approach was examined to determine agricultural drought index (ADI) at high spatial resolution, e.g., 270 m. The value of ADI was calculated based on soil water balance between supply and demand of water. Water supply is calculated by the cumulative effective precipitation with the application of the weight to the precipitation from two months ago. Water demand is derived from the actual evapotranspiration, which was calculated applying a crop coefficient to the reference evapotranspiration. The amount of surface runoff on a given soil type was also used to calculate soil residual moisture. Presence of drought was determined based on the probability distribution in the given area. In order to assess the reliability of this index, the amount of residual moisture, which represents severity of drought, was compared with measurements of soil moisture at three experimental between July 2012 and December 2013. As a result, the ADI had greater correlation with measured soil moisture compared with the standardized precipitation index, which suggested that the ADI would be useful for drought warning services.

키워드

참고문헌

  1. Abromowitz, M., and I. A. Stegun, 1964: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55. U.S. Government Printing Office, Washington, D.C.1046 pp.
  2. Allen, R. G., L. S. Peretira, D. Raes, and M. Smith, 1998: Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO irrigation and drainage paper 56, UN-FAO, Rome, Italy.
  3. Byun, H. R., and D. A. Wilhite, 1999: Objective quantification of drought severity and duration. Journal of Climate 12, 2747-2756. https://doi.org/10.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2
  4. Christy, J., 2004: The lawn & garden moisture index. (http://nsstc.uah.edu/aosc/lawn_garden2.html), (2011.12.17)
  5. Frere, M., and G. Popov, 1986: Early Agro-Meteorological Crop Yield Assessment. FAO Plant Production and Protection Paper 73. FAO, Rome.
  6. Ha, K. C., W. B. Park, and D. C. Moon, 2009: Estimation of direct runoff variation according to land use changes in Jeju island. Economic and Environmental Geology 42(4), 343-356. (in Korean with English abstract)
  7. Hiler, E. A., and R. N. Clark, 1971: Stress day index to characterize effects of water stress on crop yields. Transactions of the American Society of Agricultural Engineers 14(4), 757-761. https://doi.org/10.13031/2013.38384
  8. Hillel, D., 1998: Environmental Soil Physics. Academic Pr. 660pp.
  9. Hur, S. O., K. H. Jung, S. K. Ha, and J. G. Kim, 2006: Evaluation of meteorological elements used for reference evapotranspiration calculation of FAO Penman-Monteith model. Korean Journal of Soil Science and Fertilizer 39(5), 274-279. (in Korean with English abstract)
  10. Idso, S. B., R. D. Jackson, P. J. Pinter. Jr, R. J. Reginato, and J. L. Hatfield, 1981: Normalizing the stress-degree day parameter for environmental variability. Agricultural Meteorology 24, 45-55. Doi: 10.1016/0002-1571(81)90032-7
  11. Jones, C. A., and J. R. Kiniry, 1986: CERES-Maize: A Simulation Model of Maize Growth and Development. Texas A&M Univ. Press, College Station.
  12. Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie, 2003: The DSSAT cropping system model. European Journal of Agronomy 18, 235-265. Doi: 10.1016/S1161-0301(02)00107-7
  13. Keetch, J. J., and G. M. Byram, 1968: A drought index for forest fire control. U.S.D.A. Forest Service Research Paper SE-38. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. 35 p.
  14. Kim, D. J., and J. I. Yun, 2013: Improving usage of the Korea Meteorological Administration's digital forecasts in agriculture: 2. Refining the distribution of precipitation amount. Korean Journal of Agricultural and Forest Meteorology 15(3), 171-177. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2013.15.3.171
  15. Meyer, S. J., K. G. Hubbard, and D. A. Wihite, 1993: A crop-specific drought index for corn: I. Model development and validation. Agronomy Journal 85, 396-399. Doi:10.2134/agronj1993.00021962008500020041x
  16. McCuen, R. H., 1982: A Guide to Hydrologic Analysis Using SCS Methods. Prentice Hall, Englewood Cliffs, 110p.
  17. McKee, T. B., N. J. Doesken, and J. Kleist 1993: The relationship of drought frequency and duration to time scale. Preprints, 8th Conference on Applied Climatology, Anaheim, CA, January 17-22, pp. 179-184.
  18. Morel-Seytoux, H. J., and J. P. Verdin, 1982: Correspondence between the SCS CN and Infiltration Parameters. Advance in Irrigation and Drainage, 308-319.
  19. Nasimhan, B., and R. Srinivasan, 2005: Development and evaluation of soil moisture deficit index and evapotranspiration deficit index for agricultural drought monitoring. Agricultural and Forest Meteorology 133, 69-88. Doi: 10.1016/j.agrformet.2005.07.012
  20. Palmer, W. C., 1965: Meteorological Drought. Research Paper No. 45. U.S. Weather Bureau. Washington, DC.
  21. Palmer, W. C., 1968: Keeping track of moisture conditions, nationwide: The new crop moisture index. Weatherwise 21, 156-161. Doi: 10.1080/00431672.1968.9932814
  22. Shin, K. J., and Y. J. Kim, 2000: Application of GSIS technique for direct runoff estimation. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography 18(2), 199-209. (in Korean with English abstract)
  23. Trenberth, K., J. Overpeck, and S. Solomon, 2004: Exploring drought and its implications for the future. Eos, Transactions American Geophysical Union 85(3), 27p. https://doi.org/10.1029/2004EO030004
  24. Woil, P., J. W. Jones, K. T. Ingram, and C. W. Fraisse, 2012: Agricultural reference index for drought (ARID). Agronomy Journal 104(2), 287-300. https://doi.org/10.2134/agronj2011.0286
  25. Yoo, S. H., J. Y. Choi, and M. W. Jang, 2006: Estimation of paddy rice crop coefficients for Penman-Monteith and FAO modified Penman Method. Journal of the Korean Society of Agricultural Engineers 48, 13-23. (in Korean with English abstract) https://doi.org/10.5389/KSAE.2006.48.1.013
  26. Yun, J. I., S. O. Kim, J. H. Kim, and D. J. Kim, 2013: Userspecific agrometeorological service to local farming community: a case study. Korean Journal of Agricultural and Forest Meteorology 15(4), 63-73. (in Korean with English Abstract)
  27. 기상청, 2013: 2012년 이상기후보고서, 12-21.
  28. 한국수자원공사 www.wamis.go.kr (2014.09.01)
  29. 환경부 www.egis.go.kr (2014.09.01)