DOI QR코드

DOI QR Code

Effects of Geological Structure and Tree Density on the Forest Fire Patterns

지형구조와 나무밀도가 산불패턴에 미치는 영향

  • Received : 2014.02.28
  • Accepted : 2014.06.02
  • Published : 2014.12.30

Abstract

Understanding the forest fire patterns is necessary to comprehend the stability of the forest ecosystems. Thus, researchers have suggested the simulation models to mimic the forest fire spread dynamics, which enables us to predict the forest damage in the scenarios that are difficult to be experimentally tested in laboratory scale. However, many of the models have the limitation that many of them did not consider the complicated environmental factors, such as fuel types, wind, and moisture. In this study, we suggested a simple model with the factors, especially, the geomorphological structure of the forest and two types of fuel. The two fuels correspond to susceptible tree and resistant tree with different probabilities of transferring fire. The trees were randomly distributed in simulation space at densities ranging from 0.5 (low) to 1.0 (high). The susceptible tree had higher value of the probability than the resistant tree. Based on the number of burnt trees, we then carried out the sensitivity analysis to quantify how the forest fire patterns are affected by the structure and tree density. We believe that our model can be a useful tool to explore forest fire spreading patterns.

산불 확산 패턴 분석은 산림 생태계 안정화를 이해하는데 중요한 요소이다. 하지만 규모의 문제로 인해 실제적인 실험이 불가능하여 많은 학자들이 시뮬레이션 모델을 이용하여 산불 확산의 행동기작을 이해하고 산림 피해를 예측하였다. 그러나 많은 모델들이 연료의 종류, 바람, 습도 같은 여러 환경 요소들의 복잡한 관계를 표현하는데 한계를 가지고 있다. 본 논문에서는 지형의 구조와 두 종의 나무들로 구성된 산림에서 미치는 영향을 분석하는 간단한 모델을 제안하였다. 두 종의 나무는 가연성이 높은 나무와 가연성이 낮은 나무가 있으며, 서로 다른 산불 전이 확률을 가지고 있다. 전체 나무는 시뮬레이션 공간에 0.5에서 1.0까지의 비율로 무작위로 배치된다. 가연성이 높은 나무는 가연성이 낮은 나무 보다 높은 산불 전이 확률을 가진다. 전소한 나무의 수를 기준으로 지형의 구조와 전체 나무의 밀도가 산불 확산에 얼마나 영향을 미치는지 민감도를 분석하였다. 우리는, 본 논문에서 제시한 모델이 앞으로 산불 확산 패턴을 연구하는데 유용할 것으로 기대한다.

Keywords

References

  1. Alexandridis, A., D. Vakalis, C. I. Siettos, and G. V. Bafas, 2008: A cellular automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990. Applied Mathematics and Computation 204, 191-201. https://doi.org/10.1016/j.amc.2008.06.046
  2. Andre, J. C. S., and D. X. Viegas, 1994: A strategy to model the average fireline movement of a light to medium intensity surface forest fire. In: Proc. of the 2nd International Conference on Forest Fire Research, 221-242.
  3. Ball, G. L., and D. P. Guertin, 1992: Improved regrowth modeling. International Journal Wildland Fire 2, 47-54. https://doi.org/10.1071/WF9920047
  4. Beer, T., 1991: Bushfire rate-of-spread forecastiong: Deterministic and statistical approaches to fire modeling. Journal of Forecasting 10, 301-317. https://doi.org/10.1002/for.3980100306
  5. Butler, B. W., W. R. Anderson, and E. A. Catchpole, 2007: Influence of Slope on Fire Spread Rate. Management and Policy, 75-85.
  6. Cacuci, D. G., M. Ionescu-Bujor, and M. Navon, 2005: Sensitivity and Uncertainty Analysis: Applications to Large-Scale Systems, vol 2, CRC Press, Boca Raton
  7. Clark, T. L., M. A. Jenkins, J. Coen, and P. David, 1996: A Coupled Atmospheric Fire Model: Convect-ive Feedback on Fire Line Dynamics. Journal of Applied Meteorology 35, 875-901. https://doi.org/10.1175/1520-0450(1996)035<0875:ACAMCF>2.0.CO;2
  8. Dupuy, J. L., 1999: An analysis of semi-empirical and physical models for fire spread in wildland fuels. In: G. Eftichidis, P.Balabanis, A.Ghazi, Proc. Of the Advanced Study Course on Wildfire management, Algosystem S, A., Athens, 419-438.
  9. Dunkerley, D. L., 1999: Banded chenopod shrublands of arid Australia: modeling responses to interannual rainfall variability with cellular automata. Ecological Modelling 121, 127-138. https://doi.org/10.1016/S0304-3800(99)00088-5
  10. Gardner, R. H., B. T. Milne, M. G. Turner, and R. V. O'Neill, 1987: Neutral models for the analysis of broad-scale landscape pattern. Landscape Ecology 1, 19-28. https://doi.org/10.1007/BF02275262
  11. Grievank, A., and A. Walther, 2008: Evaluating derivatives, Principles and techniques of algorithmic differentiation. SIAM publisher. Philadelphia
  12. Feunekes, U., 1991: Error analysis in fire simulation models. MSc Thesis, University of New Bruswick.
  13. Flannigan, M. D., B. J. Stocks, and B. M. Wotton, 2000: Climate change and forest fires. Science of the Total Environment 262, 221-229. https://doi.org/10.1016/S0048-9697(00)00524-6
  14. Grassberger, P., 2002: Critical behavior of the Drossel- Schwabl forest fire model. New Journal of Physics 4, 1-15. https://doi.org/10.1088/1367-2630/4/1/301
  15. Halada, L., and P. Weisenpacher, 2005: Principles of forest fire spread models and their simulation. Journal of the Applied Mathematics, Statistics and Informatics 1, 3-13.
  16. Ioannis, K., and T. Adonios, 1997: A model for predicting forest fire spreading using cellular automata. Ecological Modelling 99, 87-97. https://doi.org/10.1016/S0304-3800(96)01942-4
  17. Malamud, B. D., G. Morein, and D. L. Turcotte, 1998: Forest-fires:an example of self-organized critical behavior. Science 281, 1840-1842. https://doi.org/10.1126/science.281.5384.1840
  18. Malamud, B. D., G. Morein, and D. L. Turcotte, 2005: Logperiodic behavior in a forest-fire model. Nonlinear Processes in Geophysics 12, 575-585. https://doi.org/10.5194/npg-12-575-2005
  19. McCoy, V. M., and C. R. Burn, 2005: Potential alteration by climate change of the forest fire regime in the boreal forest of central Yukon Territory. Arctic 58, 276.
  20. Pimont, F., J. L. Dupuy, and R. R., Linn, 2012: Coupled slope and wind effects on fire spread with influences of fire size: a numerical study using FIRETEC. International journal of wildland fire 21, 828-842. https://doi.org/10.1071/WF11122
  21. Pinol, J., J. Terradas, and F. Lloret, 1998: Climate Warming, Wildfire Hazard, and Wildfire Occurrence in Coastal Eastern Spain. Climatic Change 38, 345-357. https://doi.org/10.1023/A:1005316632105
  22. Pitts, W. M., 1991: Wind Effects on Fires. Progress in Energy and Combustion Science 17, 83-134. https://doi.org/10.1016/0360-1285(91)90017-H
  23. Ratz, A., 1995: Long-term spatial patterns created by fire: a model oriented towards boreal forests. International Journal of Wildland Fire 5, 25-34. https://doi.org/10.1071/WF9950025
  24. Spencer, M., 1997: The effects of habitat size and energy on food web structure: An individual-based cellular automata model. Ecological Modelling 94, 299-316. https://doi.org/10.1016/S0304-3800(96)00026-9
  25. Sirakoulis, G. C., I. Karafyllidis, and A. Thanailakis, 2000: A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecological Modelling 133, 209-222. https://doi.org/10.1016/S0304-3800(00)00294-5
  26. Song, H. S., and S. H. Lee, 2013: Sensitivity Analysis on Ecological Factors Affecting Forest Fire Spreading: Simulation Study. Korean Journal of Agricultural and Forest Meteorology 15, 1-8. https://doi.org/10.5532/KJAFM.2013.15.1.001
  27. Song, H. S., W. Jeon, and S. H. Lee, 2013: A simulation model for the study on the forest fire pattern. Journal of The Korea Society for Simulation 22, 101-107. https://doi.org/10.9709/JKSS.2013.22.2.101
  28. Vasconcelos, M. J., and D. P. Guertin, 1992: Firemap: simulation of fire growth with a geographic information system. International Journal Wildland Fire 2, 87-96. https://doi.org/10.1071/WF9920087
  29. Weise, D. R., and G. S. Biging, 1997: A Qualitative Comparison of Fire Spread Models Incorporating Wind and Slope Effects. Forest Science 43, 170-180.
  30. Wolfram, S., 1994: Cellular Automata and Complexity. Addison-Wesley Publishing Company.