DOI QR코드

DOI QR Code

국내산 자색고구마(Ipomoea batatas L. Lam.) 추출물의 항산화활성 평가

Antioxidant Activities of Ipomoea batatas L. Lam. (Purple Sweet Potato) Extracts Cultured in Korea

  • 공봉주 (서울과학기술대학교 정밀화학과 화장품종합기술연구소) ;
  • 한성수 ((주)아로코스메틱) ;
  • 하지훈 (서울과학기술대학교 정밀화학과 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과 화장품종합기술연구소)
  • Kong, Bong Ju (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Han, Sung Soo (Arocosmetic Co. Ltd.) ;
  • Ha, Ji Hoon (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
  • 투고 : 2014.12.05
  • 심사 : 2014.12.26
  • 발행 : 2014.12.31

초록

본 연구에서는 국내산 자색고구마(Ipomoea batatas L. Lam.) 추출물을 제조하고 이들 추출물에 대하여 항산화 활성을 측정하였다. 자색고구마 추출물은 70% 에탄올 추출물과 그 추출물로부터 에틸아세테이트 분획으로 제조하였다. 추출물 및 분획의 수율은 건조 분말 당 각각 39.2% 및 3.49%이었다. 이들 추출물/분획에 대한 항산화 활성을 확인하기 위해 자유 라디칼(1,1-phenyl-2-picrylhydrazyl, DPPH) 소거활성과 루미놀 발광법을 이용한 총항산화능 그리고 세포손상에 대한 보호효과를 측정하였다. 자유 라디칼 소거활성($FSC_{50}$)은 70%에탄올 추출물과 에틸아세테이트 분획이 각각 $90.16{\mu}g/mL$$7.69{\mu}g/mL$를 나타내었다. 비교 대조군으로 사용한 (+)-${\alpha}$-tocopherol의 라디칼 소거활성은 $8.98{\mu}g/mL$로, 에틸아세테이트 분획의 라디칼 소거활성이 보다 큼을 알 수 있었다. 루미놀 발광법을 이용한 70% 에탄올 추출물과 에틸아세테이트 분획의 총 항산화능($OSC_{50}$)은 각각 $5.75{\mu}g/mL$$1.92{\mu}g/mL$이었다. 비교 대조군으로 사용한 항산화 효능이 매우 우수한 L-ascorbic acid의 항산화능은 $1.50{\mu}g/mL$로 추출물의 에틸아세테이트 분획과 유사한 활성을 나타내었다. $^1O_2$로 유도된 사람 적혈구의 세포손상에 대한 보호 효과 실험에서 에틸아세테이트 분획은 농도 의존적($5{\sim}50{\mu}g/mL$)으로 세포보호 효과를 나타내었다. 에틸아세테이트 분획의 세포보호활성(${\tau}_{50}$)은 $5{\mu}g/mL$에서 45.6 min으로 모든 농도에서 비교 대조군인 (+)-${\alpha}$-tocopherol 보다 더 높은 세포보호 효과를 나타내었다. 이상의 결과들로부터 자색고구마의 에틸아세테이트 분획은 뛰어난 항산화능을 나타내며, 이는 피부노화 억제를 위한 항노화 기능성 화장품원료로 응용될 수 있는 가능성을 시사하였다.

In this study, the antioxidative effects for the extracts of purple sweet potato (Ipomoea batatas L. Lam.) were investigated. The purple sweet potato was extracted with 70% ethanol and the ethyl acetate fraction was obtained from the extracts. The yields of extract and ethyl acetate fraction were 39.2% and 3.49% per dried powder, respectively. To confirm the antioxidative effects of the extracts, free radical scavenging activities (1,1-diphenyl-2-picrylhydrazyl), total antioxidant capacity by luminol-dependent chemiluminescence assay and the protective effects against reactive oxygen species (ROS) in erythrocytes were measured. Free radical scavenging activities ($FSC_{50}$) of the 70% ethanol extract and ethyl acetate fraction were $90.16{\mu}g/mL$ and $7.69{\mu}g/mL$, respectively. The free radical scavenging activity of ethyl acetate fraction was higher than that of (+)-${\alpha}$-tocopherol ($8.98{\mu}g/mL$). Total antioxidant capacities ($OSC_{50}$) of the 70% ethanol extract and ethyl acetate fraction were $5.75{\mu}g/mL$ and $1.92{\mu}g/mL$, respectively. The capacity of ethyl acetate fraction was similar to L-ascorbic acid, known as a prominent water soluble antioxidant ($1.50{\mu}g/mL$). The cellular protective effects of the ethyl acetate fractions on the $^1O_2$-induced cellular damage of human erythrocytes were increased in a concentration dependent manner ($5{\sim}50{\mu}g/mL$). The ${\tau}_{50}$ value in $5{\mu}g/mL$ was 45.6 min which was higher than that of (+)-${\alpha}$-tocopherol in all concentrations. These results indicate that the ethyl acetate fraction of purple sweet potato (I. batatas) has the excellent antioxidative capacity and could be applicable to anti-aging cosmeceutical ingredients for skin aging inhibition.

키워드

참고문헌

  1. K. Scharffetter-Kochanek, M. Wlaschek, K. Briviba, and H. Sies, Singlet oxygen induces collagenase expression in human skin fibroblasts, FEBS Lett., 331, 304 (1993). https://doi.org/10.1016/0014-5793(93)80357-Z
  2. M. Wlaschek, K. Briviba, G. P. Stricklin, H. Sies, and K. Scharffetter-Kochanek, Singlet oxygen may mediate the ultraviolet A induced synthesis of intestitial collagenase, J. Invest. Dermatol., 104, 194 (1995). https://doi.org/10.1111/1523-1747.ep12612751
  3. S. N. Park, Skin aging and antioxidant, J. Soc. Cosmet. Scientists Korea, 23(3), 75 (1997).
  4. S. N. Park, Antioxidative properties of baicalein, component from Scutellaria baicalensis Georgi and its application to cosmetics (I), J. Korean Ind. Eng. Chem., 14(5), 657 (2003).
  5. S. N. Park, Effect of natural products on skin cells: action and suppression of reactive oxygen species, J. Soc. Cosmet. Scientists Korea, 25(2), 77 (1999).
  6. H. Masaki, Role of antioxidants in the skin : antiaging effects, J. Dermatol. Sci., 58, 85 (2010). https://doi.org/10.1016/j.jdermsci.2010.03.003
  7. H. M. Chiang, H. C. Chen, H. H. Chiu, C. W. Chen, S. M. Wang, and K. C. Wen, Neonauclea reticulata (Havil.) Merr stimulates skin regeneration after UVB exposure via ROS scavenging and modulation of the MAPK/MMPs/collagen pathway, Evid. Based Complement. Alternat. Med., 2013, 9 (2013).
  8. D. Bagchi, M. Bagchi, E. A. Hassoun, and S. J. Stohs, In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides, Toxicology, 104, 129 (1995). https://doi.org/10.1016/0300-483X(95)03156-A
  9. M. Iwata, T. Corn, S. Iwata, M. A. Everett, and B. B. Fuller, The relationship between tyrosinase activity and skin color in human foreskins, J. Invest. Dermatol., 95, 9 (1990). https://doi.org/10.1111/1523-1747.ep12872677
  10. K. Kameyama, T. Takemura, Y. Hamada, C. Sakai, S. Kondoh, and S. Nishi-yama, Pigment production in murine melanoma cells is regulated by tyrosinase, tyrosinase-related protein 1 (TRP), dopachrome tautomerase (TRP 2) and a melanogenic inhibitor, J. Invest. Dermatol., 100, 126 (1993). https://doi.org/10.1111/1523-1747.ep12462778
  11. S. A. Park, J. H. Ha, and S. N. Park, Antioxidative activity and component analysis of Broussonetia kazinoki SIEB extracts, Appl. Chem. Eng., 24(2), 177 (2013).
  12. S. N. Park, S. Y. Kim, G. N. Lim, N. R. Jo, and M. H. Lee, In vitro skin permeation and cellular protective effects of flavonoids isoplated from Suaeda asparagoides extracts, J. Ind. Eng. Chem., 18(2), 680 (2012). https://doi.org/10.1016/j.jiec.2011.11.126
  13. N. R. Jo, H. A. Gu, S. A. Park, S. B. Han, and S. N. Park, Cellular protective effect and liposome formulation for enhanced transdermal delivery of isoquercitrin, J. Soc. Cosmet. Scientists Korea, 38(2), 103 (2012). https://doi.org/10.15230/SCSK.2012.38.2.103
  14. B. S. Henry, Natural food colors. In natural food colorants, eds. G.A.F. Hendry and J.D. Houghton, 39, Blackie and Son Ltd., Glasgow (1992).
  15. R. L. Jackman, R. Y. Yada, M. A. Jung, and R. A. Speers, Anthocyanin as food colorants, J. Food Biochem., 11, 201 (1987). https://doi.org/10.1111/j.1745-4514.1987.tb00123.x
  16. R. L. Jackman, R. Y. Yada, and M. A. Jung, Separation and chemical properties of anthocyanins used for their qualitative and quantiative analysis, J. Food Biochem., 11, 279 (1987). https://doi.org/10.1111/j.1745-4514.1987.tb00128.x
  17. G. Mazza and E. Miniati, Anthocyanins in fruits, vegetables and grains, Mol. Nutr. Food Res., 38(3), 343 (1994).
  18. H. H. Lee, S. G. Kang, and J. W. Rhim, Characteristics of antioxidative and antimicrobial activities of various cultivars of sweet potato, Korean J. Food Sci. Technol., 31(4), 1090 (1999).
  19. Y. J. Cho, H. A. Kim, M. A. Bang, Y. B. Oh, B. C. Jeong, Y. H. Moon, and W. J. Jeong, Protective effect of purple sweet potato (Ipomoea batatas L. Lam.) on hepatotoxicity rats induced by carbon tetrachlolide, Korean J. Food Culture, 18, 202 (2003).
  20. Z. Shi, I. A. Bassa, S. C. Gabriel, and F. J. Francis, Anthocyanin pigments of sweet potatoes-Ipomoea batatas L. Lam., J. Food Sci., 57, 755 (1992). https://doi.org/10.1111/j.1365-2621.1992.tb08088.x
  21. H. M. Lee, B. J. Kong, S. S. Kwon, K. J. Kim, H. S. Kim, S. H. Jeon, J. H. Ha, J. S. Kim, and S. N. Park, Antioxidative activities of Aronia melanocarpa fruit and leaf extracts, J. Soc. Cosmet. Scientists Korea, 39(4), 337 (2013). https://doi.org/10.15230/SCSK.2013.39.4.337