DOI QR코드

DOI QR Code

Study on Anti-oxidant and Anti-inflammatory Activity of the Tissue-cultured Shoot Clumps from Raoulia australis

라울리아 신초 추출물의 항산화 및 항염 효능에 관한 연구

  • Park, Chang-Min (R&D Center, Hankook Cosmetics Manufacturing Co., Ltd.) ;
  • Han, Na-Kyeong (R&D Center, Hankook Cosmetics Manufacturing Co., Ltd.) ;
  • Joung, Min-Seok (R&D Center, Hankook Cosmetics Manufacturing Co., Ltd.) ;
  • Paek, Kee-Yoeup (Research Center for The Development of Advanced Horticultural Technology, Chungbuk National University) ;
  • Choi, Jong-Wan (R&D Center, Hankook Cosmetics Manufacturing Co., Ltd.)
  • 박창민 ((주)한국화장품제조 기술개발연구소) ;
  • 한나경 ((주)한국화장품제조 기술개발연구소) ;
  • 정민석 ((주)한국화장품제조 기술개발연구소) ;
  • 백기엽 (충북대학교 첨단원예기술개발센터) ;
  • 최종완 ((주)한국화장품제조 기술개발연구소)
  • Received : 2014.08.14
  • Accepted : 2014.12.15
  • Published : 2014.12.31

Abstract

In this study, the shoot clumps extract of tissue-cultured Raoulia australis using the bioreactor culture system was tested for use a natural cosmetic ingredient. Tissue-cultured R. australis shoot clumps extract was tested anti-oxidant and anti-inflammatory activity for a cosmetic application. R. australis is a wild herbaceous plant of the asteraceae growing in New Zealand and Australia. Previous studies have reported anti-viral activity of the inhibitory effects for the growth of viruses induced meningitis, bronchitis and respiratory diseases but other biological effects are unknown. The shoot clumps extract of tissue-cultured R. australis showed higher anti-oxidant effect and anti-inflammatory effect than the natural R. australis extract. In DPPH, NBT and ABTS assay, the shoot clumps extract of tissue-cultured R. australis enhanced radical scavenging activity (up to 10~25% at $50{\mu}L/mL$) more than the natural R. australis extract. Also, the shoot clumps extract of tissue-cultured R. australis inhibited expression of iNOS and COX-2 protein in LPS-stimulated Raw 264.7 macrophages more than the natural R. australis extract. From this study, the shoot clumps extract of tissue-cultured R. australis displayed strong possibility as a new natural cosmetic ingredient for skin-care products.

본 연구에서는 생물반응장치를 이용하여 조직 배양된 라울리아 신초에 대하여 화장품 성분으로써 응용가치를 평가하였다. 조직 배양한 라울리아 신초에 대한 항산화 및 항염 활성 효과를 연구하였다. 라울리아는 뉴질랜드나 호주에서 자생하는 국화과의 야생초본식물이다. 이미 몇몇 보고 된 논문에서 라울리아는 기관지염, 수막염 그리고 호흡기 질병 등을 유발하는 바이러스에 대한 증식 억제 활성이 있다고 보고되었다. 실험 결과 조직배양된 라울리아 신초 추출물은 자연 상태의 라울리아 추출물과 비교하여 항산화 활성 및 항염 활성 효과가 우수하였다. 조직 배양된 라울리아 신초 추출물은 자연에서 자란 라울리아 추출물보다 $50{\mu}L/mL$ 농도에서 10~25% 항산화 활성을 증가시켰다. 또한 조직 배양된 라울리아 신초 추출물은 LPS로 유도된 대식세포에서 iNOS와 COX-2의 단백질 발현이 자연에서 자란 라울리아 추출물보다 억제되었다. 본 연구의 결과들로, 조직배양 한 라울리아 신초 추출물은 피부 보호를 위한 천연 화장품 성분으로써 우수한 가능성을 제공할 수 있을 것으로 사료된다.

Keywords

References

  1. S. J. Bloor, Raoulic acid: A novel bioactive C25 terpeneacid from Raoulia australis, Tetrahedron Lett., 34, 5617 (1993). https://doi.org/10.1016/S0040-4039(00)73897-4
  2. H. J. Choi, J. H. Song, C. H. Lim, S. H. Baek, and D. H. Kwon, Anti-human rhinovirus activity of raoulic acid from Raoulia australis, J. Med. Food, 13(2), 326 (2010). https://doi.org/10.1089/jmf.2009.1149
  3. M. B. Ali, E. J. Hahn, and Y. K. Paek, Copper-induced changes in the groth, oxidative metabolism, andsaponin production in suspension cultured roots of Panax ginseng in bioreactors, Plant Cell Rep., 25, 1122 (2006). https://doi.org/10.1007/s00299-006-0174-x
  4. H. J. Choi, J. H. Song, C. H. Lim, S. H. Baek, and D. H. Kwon, Antiviral activity of raoulic acid from Raoulia australis against picornaviruses, Phytomedicine, 16(1), 35 (2009). https://doi.org/10.1016/j.phymed.2008.10.012
  5. M. S. Blois, Antioxidants determination by the use a stable free radical, Nature, 181, 1198 (1958).
  6. R. G. Kim, K. M. Shin, S. K. Chun, S. Y. Ji, S. H. Seo, H. J. Park, J. W. Choi, and K. T. Lee, In vitro anti-inflammatory activity of the essential oil from Ligularia fischeri var. spiciformis in Murine macrophage Raw 264.7 cells, Yakhak Hoeji, 46(5), 343 (2002).
  7. W. Brand-Williams, M. E. Cuvelier, and C. Berset, Use of free radical method to evaluate antioxidant activity, Lebensmittel Wissenschaftund Technologie, 28, 25 (1995). https://doi.org/10.1016/S0023-6438(95)80008-5
  8. R. Roberta, P. Nicoletta, P. Anna, P. Ananth, Y. Min, and R. E. Catherine, Anti-oxidant activity appling an improved ABTS radicla cation decolorization assay, Free Radical Biology & Medicine, 26(9), 1231 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3
  9. T. Liu, N. Xiao, Y. Liu, B. Wilson, J. Li, Y. Wang, X. Cao, and Z. Liu, The anti-inflammatory effects of ethyl acetate on Lipopolysaccharide /D-galactosamine challenged mice and Lipopolysaccharide activated RAW264.7 cells, Biochem. Biophys. Res. Commun., 26(3), 518 (2012).
  10. E. J. Lee, S. H. Moh, and K. Y. Paek, Influence of inoculum density and aeration volume on biomass and bioactive compound production in bulb-type bubble bioreactor cultures of Eleutherococcus koreanum Nakai, Bioresource Technology, 102, 7165 (2011). https://doi.org/10.1016/j.biortech.2011.04.076
  11. L. C. Green, D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, and S. R. Tannenbaum, Analysis of nitrate, nitrite and [15N]-nitrate in biological fluids, Anal. Biochem., 126(1), 131 (1982). https://doi.org/10.1016/0003-2697(82)90118-X
  12. C. M. Park, M. J. Park, H. J. Kwak, H. C. Lee, M. S. Kim, S. H. Lee, I. C. Park, C. H. Rhee, and S. I. Hong, Ionizing radiation enhances matrix metalloproteinase- 2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways, Cancer Res., 66(17), 8511 (2006). https://doi.org/10.1158/0008-5472.CAN-05-4340
  13. J. Andrej, F. Juraj, P. Ivana, and M. Tibor, Approaches to flavonoid production in plant tissue cultures, Biologia, Bratislava, 59(6), 697 (2004).
  14. A. Matkowski, Plant in vitro culture for the production of antioxidants-a review, Biotechnol. Adv., 26(6), 548 (2008). https://doi.org/10.1016/j.biotechadv.2008.07.001
  15. J. I. Gong, D. Xia, J. Huang, Q. Ge, J. Mao, S. Liu, and Y. Zhang, Functional components of bamboo shavings and bamboo leaf extracts and their anti-oxidant activities in vitro, J. Med. Food, 13, (2014).
  16. M. I. Kacem, G. Simon, R. Leschiera, L. Misery, A. ElFeki, and N. Lebonvallet, Anti-oxidant and anti-inflammatory effects of Ruta chalepensis L. extracts on LPS-stimulated RAW 264.7 cells, In Vitro Cell Dev. Biol. Anim., 2, (2014).
  17. R. B. Mansour, I. B. Jilani, M. Bouaziz, B. Gargouri, N. Elloumi, H. Attia, Z. Ghrabi-Gammar, and S. Lassoued, Phenolic contents and antioxidant activity of ethanolic extract of Capparis spinosa, Cytotechnology, 7, (2014).
  18. K. N. Sunil Kumar, A. Saraswathy, S. Amerjothy, T. Susan, and B. Ravishankar, Total phenol content and in vitro anti-oxidant potential of Helicanthus elastica (Desr.) danser-A less-explored indian mango mistletoe, J. Tradit. Complement Med., 4(4), 285 (2014). https://doi.org/10.4103/2225-4110.130950
  19. A. A. Alafiatayo, A. Syahida, and M. Mahmood, Total anti-oxidant capacity, flavonoid, phenolic Acid and polyphenol content in ten selected species of zingiberaceae rhizomes, Afr. J. Tradit. Complement Altern. Med., 11(3), 7 (2014). https://doi.org/10.4314/ajtcam.v11i3.2