Dosimetric Comparison of Intensity Modulated Radiation, Proton Beam Therapy and Proton Arc Therapy for Para-aortic Lymph Node Tumor

대동맥림프절 종양에 대한 세기조절방사선치료, 양성자치료, 양성자회전치료의 선량 비교평가

  • Kim, JungHoon (Department Radiation Oncology, Konyang University Hospital)
  • 김정훈 (건양대학교병원 방사선종양학과)
  • Received : 2014.10.29
  • Accepted : 2014.11.12
  • Published : 2014.12.31

Abstract

To test feasibility of proton arc therapy (PAT) in the treatment of para-aortic lymph node tumor and compare its dosimetric properties with advanced radiotherapy techniques such as intensity modulated radiation therapy (IMRT) and conventional 3D conformal proton beam therapy (PBT). The treatment plans for para-aortic lymph node tumor were planned for 9 patients treated at our institution using IMRT, PBT, and PAT. Feasibility test and dosimetric evaluation were based on comparisons of dose volume histograms (DVHs) which reveal mean dose, $D_{30%}$, $D_{60%}$, $D_{90%}$, $V_{30%}$, $V_{60%}$, $V_{90%}$, organ equivalent doses (OEDs), normal tissue complication probability (NTCP), homogeneity index (HI) and conformity index (CI). The average doses delivered by PAT to the liver, kidney, small bowel, duodenum, stomach were 7.6%, 3%, 17.3%, 26.7%, and 14.4%, of the prescription dose (PD), respectively, which is higher than the doses delivered by IMRT (0.4%, 7.2%, 14.2%, 15.9%, and 12.8%, respectively) and PBT (4.9%, 0.5%, 14.12%, 16.1% 9.9%, respectively). The average homogeneity index and conformity index of tumor using PAT were 12.1 and 1.21, respectively which were much better than IMRT (21.5 and 1.47, respectively) and comparable to PBT (13.1 and 1.23, respectively). The result shows that both NTCP and OED of PAT are generally lower than IMRT and PBT. This study demonstrates that PAT is better in target conformity and homogeneity than IMRT and PBT but worse than IMRT and PBT for most of dosimetric factor which indicate that PAT is not recommended for the treatment of para-aortic lymph node tumor.

현재 상용화되어 있는 양성자치료의 치료계획장비를 이용하여 방사선회전조사와 같은 치료계획을 양성자치료에 사용하여 대동맥 주위 림프절 종양에 대해 양성자회전치료와 양성자치료, 세기조절방사선치료를 이용하여 선량 평가를 하였다. 대동맥주위 림프절 종양 환자 9명을 대상으로 양성자회전치료, 양성자치료, 세기조절방사선치료의 방사선치료계획을 세워 각각의 선량 체적 히스토그램을 이용하여 선량 평가를 하였다. 양성자회전치료의 치료계획방법으로는 250~120까지 5도 간격으로 48개의 빔을 사용하였으며, 양성자치료와 세기조절방사선치료는 각각 2~3, 4~5개의 빔을 사용하였다. 모든 방사선 치료계획 시스템은 Eclipse planning system(Varian Medical system, Inc., Palo Alto, CA, USA)을 사용하였으며, 양성자회전치료는 아직 개발이 안된 치료장치이므로 치료계획방법에서 기계적, 물리적인 요소를 양성자치료계획과 동일하게 시행하였다. 선량분석방법으로는 정상장기(간, 신장, 소장, 위, 십이지장)와 종양의 선량 체적 히스토그램(dose-volume histogram: DVH)을 이용하여 생물학적 인자인 normal tissue complication probabilities(NTCP), organ equivalent dose(OED)와 mean dose를 각각의 치료계획방법을 비교 분석 평가하였다. 그 결과 양성자회전치료가 복부에 위치한 small bowel, duodenum, stomach의 볼륨 90%가 받는 선량에서의 결과는 다른 치료계획에 비해 높은 결과를 나타내고 있다. NTCP의 결과에서 양성자회전치료가 liver를 제외한 나머지 장기에서 가장 낮은 결과를 보여주고 있다. 하지만 복부에 위치한 정상장기에 받는 선량이 다른 치료계획에 비해 높아 치료계획 시 주위가 요하며, 물리적, 기계적인 요소는 양성자치료와 동일하다는 전제조건으로 양성자회전치료와 유사한 장비가 제작되어 상용화 되었을 때에 본 연구의 결과와는 다를 거라 사료된다. 현실적으로 아직 불가능한 치료방법이지만 앞으로 추가적인 양성자회전치료의 연구와 기술개발이 되어 상용화가 되면 기존의 특수방사선치료인 세기조절방사선치료, 양성자치료, 세기조절회전치료보다 효과적이고 안전한 치료방법이 될 거라고 사료된다.

Keywords

References

  1. Intensity Modulated Radiation Therapy Collaborative Working Group.: Intensity-modulated radiotherapy: current status and issues of interest In International journal of radiation oncology, biology, physics, 51, 880-914, 2001 https://doi.org/10.1016/S0360-3016(01)01749-7
  2. Cozzi, L., Dinshaw, K., & Shrivastava, S.: A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiotherapy and Oncology. 89, 180-191, 2008 https://doi.org/10.1016/j.radonc.2008.06.013
  3. Hall EJ.: Intensity modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 65, 1-7, 2006 https://doi.org/10.1016/j.ijrobp.2006.01.027
  4. Menkarios, C., Azria, D., Laliberte, B., et al.: Optimal organ-sparing intensity-modulated radiation therapy (IMRT) regimen for the treatment of locally advanced anal canal carcinoma: a comparison of conventional and IMRT plans. Radiation oncology (London, England), 2(1), 41. 2007 https://doi.org/10.1186/1748-717X-2-41
  5. Drzymala, R., Mohan, R., Brewster, L., & Chu, J.: Dose-volume histograms. Int J Radiat Oncol Biol Phys. 21, 71-78. 1991 https://doi.org/10.1016/0360-3016(91)90168-4
  6. Pan CC, Dawson LA, McGinn CJ, Lawrence TS, Haken RKT.: Analysis of radiation induced gastric and duodenal bleeds using the Lyman-Kutcher-Burman model. Int J Radiat Oncol Biol Phys, 57, 217-218, 2003 https://doi.org/10.1016/S0360-3016(03)00436-X
  7. Fay M, Tan A, Fisher R, et al.: Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys, 61, 1355-1363, 2005 https://doi.org/10.1016/j.ijrobp.2004.08.025
  8. Kallmann P, Agren A, Brahme A.: Tumour and normal tissue responses to gractionated non-uniform dose delivery. Int J Radiat Biol, 62, 249-62, 1992 https://doi.org/10.1080/09553009214552071
  9. Jones LC, Hoban PW.: Treatment plan comparison using equivalent uniform biologically effective dose(EUBED). Phys Med Biol, 45, 159-170, 2000 https://doi.org/10.1088/0031-9155/45/1/311
  10. Levin, W. P., Kooy, H., Loeffler, J. S., & Reznek Editors, R.: Proton beam therapy. British Journal of Cancer, 93(8), 849-854, 2005 https://doi.org/10.1038/sj.bjc.6602754
  11. G.A. Sandison, E. Papiez, C. Bloch, J. Morrhis: Phantom assessment of lung dose from proton arc therapy. Int. J. Radiatin Oncology Biol. Phy, 38, 891-897, 1997 https://doi.org/10.1016/S0360-3016(97)00059-X
  12. Kim, J. S., Yoon, M., Park, S. Y. et al.: A Dose Volume Histogram Analyzer Program for External Beam Radiotherapy. The Journal of the Korean Society for Therapeutic Radiology and Oncology, 27(4), 240-248, 2009 https://doi.org/10.3857/jkstro.2009.27.4.240
  13. Stanescu, T., Jans, H., & Pervez, N.: A study on the magnetic resonance imaging (MRI)-based radiation treatment planning of intracranial lesions. Phys. Med. Biol, 53, 3579, 2008 https://doi.org/10.1088/0031-9155/53/13/013
  14. Moyers MF, Miller DW, Bush DA, et al: Methodologies and tools for proton beam design for lung tumors. Int J Radiat Oncol Biol Phys, 49, 1429-1438, 2001 https://doi.org/10.1016/S0360-3016(00)01555-8
  15. Urie M, Goitien M, Wagner M.: Compensating for heterogeneities in proton radiation therapy. Phys Med Biol, 29, 553-66, 1983
  16. Schneider U, Lomax A, Besserer J, et al: The impact of IMRT and proton radiotherapy on secondary cancer incidence. Int J Radiat Oncol Biol Phys, 68(3), 892-897, 2007 https://doi.org/10.1016/j.ijrobp.2007.02.029
  17. Schneider U, Lomax A, Timmermann B.: Second cancers in children treated with modern radiotherapy techniques. Radiother Oncol, 89, 135-140, 2008 https://doi.org/10.1016/j.radonc.2008.07.017
  18. Schneider U.: Mechanistic model of radiation induced cancer after fractionated radiotherapy using the linear-quadratic formula. Med Phys, 36, 1138-1143, 2009 https://doi.org/10.1118/1.3089792
  19. Eisbruch A, Chao KS, Garden AS. RTOG H-0022: Phase I/II study of conformal and intensity modulated irradiation for oropharyngeal cancer. Radiation Therapy Oncology Group, 2010
  20. Yoon, M., Shin, D. H., Kim, J., et al.: Craniospinal Irradiation Techniques: A Dosimetric Comparison of Proton Beams with Standard and Advanced Photon Radiotherapy International journal of radiation oncology biology physics, 78(2), 390-397, 2010 https://doi.org/10.1016/j.ijrobp.2009.08.029