DOI QR코드

DOI QR Code

강우 이벤트가 태화산 잣나무 식재림의 각 발생원별 $CO_2$ 발생량에 미치는 영향

The Effect of Rain Fall Event on $CO_2$ Emission in Pinus koraiensis Plantation in Mt. Taehwa

  • 서상욱 (국립농업과학원 기후변화생태과) ;
  • 박성애 (국립환경과학원 자연환경연구과) ;
  • 심규영 (국립환경과학원 자연환경연구과) ;
  • 양병국 (국립환경과학원 자연환경연구과) ;
  • 최은정 (국립농업과학원 기후변화생태과) ;
  • 이재석 (건국대학교 생명과학과) ;
  • 김태규 (국립환경과학원 자연환경연구과)
  • Suh, Sanguk (Climate Change & Agroecology Division, National Academy of Agricultural Science) ;
  • Park, Sungae (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Shim, Kyuyoung (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Yang, Byeonggug (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Choi, Eunjung (Climate Change & Agroecology Division, National Academy of Agricultural Science) ;
  • Lee, Jaeseok (College of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Taekyu (Natural Environment Research Division, National Institute of Environmental Research)
  • 투고 : 2014.11.05
  • 심사 : 2014.12.05
  • 발행 : 2014.12.31

초록

본 연구는 몬순기후에 의해 장마라는 특징적인 강우패턴을 가지는 환경조건에서 강우 패턴 및 강우 강도의 변화가 삼림 내 지표 유출수와 토양수분함량을 변화시켜 토양호흡의 배출 양상을 어떻게 변화시키는지 알아보기 위하여 수행되었다. 대상지는 경기도 광주시에 위치한 서울대학교 학술림 내 잣나무식재림으로 2012년 1년 동안 자동 토양호흡 쳄버를 이용하여 연변화를 측정하였고 단근처리 기법을 이용하여 토양호흡 중 약 24%가 뿌리호흡에서 기인한 것으로 추정되었다. 이와 더불어 장마와 태풍으로 인한 다양한 강도의 강우가 발생한 7월 말부터 9월 말까지 휴대용 토양호흡 측정기를 이용하여 관측지 내 단근처리구와 단근 및 강우차단처리구에서 종속영양생물호흡을 측정하였다. 토양수분함량의 경우 고강도의 강우가 며칠씩 이어지더라도 20%를 초과하지 않았다. 이는 강수가 상대적으로 적은 시기에는 수목활성이나 토양미생물의 활성에 영향을 미칠 것으로 추정된다. 강우 강도가 10 mm 이하의 저강도 강우에서는 종속영양생물호흡이 약 14.4% 상승하였으나 10 mm 이상의 고강도 강우조건에서는 종속영양생물호흡이 25.5% 감소하였다. 이는 강우 강도에 따라 종속영양생물호흡의 배출 양상이 달라짐을 보여주었다.

This study was conducted to find out the soil $CO_2$ emission characteristic due to rain fall pattern and intensity changes. Using Automatic Opening and Closing Chambers (AOCCs), we have measured annual soil respiration changes in Pinus koraiensis plantation at Seoul National University experimental forest in Mt. Taehwa. In addition, we have monitored heterotrophic respiration at trenching sites ($4{\times}6m$). Based on the one year data of soil respiration and heterotrophic respiration, we observed that 24% of soil respiration was derived from root respiration. During the rainy season (end of July to September), soil respiration at trenching site and trenching with rainfall interception site were measure during portable soil respiration analyzer (GMP343, Vaisala, Helsinki, Finland). Surprisingly, even after days of continuous heavy rain, soil water content did not exceed 20%. Based on this observation, we suggest that the maximum water holding capacity is about 20%, and relatively lower soil water contents during the dry season affect the vital degree of trees and soil microbe. As for soil respiration under different rain intensity, it was increased about 14.4% under 10 mm precipitation. But the high-intensity rain condition, such as more than 10 mm precipitation, caused the decrease of soil respiration up to 25.5%. Taken together, this study suggests that the pattern of soil respiration can be regulated by not only soil temperature but also due to the rain fall intensity.

키워드

참고문헌

  1. Baldocchi D, E Falge, L Gu, R Olson, D Hollinger, S Running, P Anthoni, Ch Bernhofer, K Davis, R Evans, J Fuentes, A Goldstein, G Katul, B Law, X Lee, Y Malhi, T Meyers, W Munger, W Oechel, UKT Paw, K Pilegaard, HP Schmid, R Valantini, S Verma, T Vesala, K Wilson and S Wofsy. 2001 : FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. J. Clim. 82:2415-2434.
  2. Baldocchi D. 2008. Breathing of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 56:1-26. https://doi.org/10.1071/BT07151
  3. Bond-Lamberty Ben, C Wang and ST Gower. 2004. Contribution of root respiration to soil surface $CO_2$ flux in a boreal black spruce chronosequence. Tree Physiol. 24:1387-1395. https://doi.org/10.1093/treephys/24.12.1387
  4. Falge E, D Baldocchi, J Tenhunen, M Aubinet, P Bakwin, P Berbigier, C Bernhofer, G Burba, R Clement, KJ Davis, JA Elbers, AH Goldstein, A Grelle, A Granier, J Gumundsson, D Hollinger, AS Kowalski, G Katul, BE Law, Y Malhi, T Meyers, RK Monson, JW Munger, W Oechel, U Paw, T Kyaw, K Pilegaard, U Rannik, C Rebmann, A Suyker, R Valentini, K Wilson and S Wofsy. 2002. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricult. Meteorol. 113:53-74 https://doi.org/10.1016/S0168-1923(02)00102-8
  5. Fang C and JB Moncrieff. 2001. The dependence of soil $CO_2$ efflux on temperature. Soil Biol. Biochem. 33:155-165. https://doi.org/10.1016/S0038-0717(00)00125-5
  6. Hanson PJ, NT Edward, CT Garten and JA Andrews. 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and obserbations. Biogeochemistry 48:115-146. https://doi.org/10.1023/A:1006244819642
  7. Hubbard RM, MG Ryan, K Elder and CC Rhoades. 2005. Seasonal patterns in soil surface $CO_2$ flux under snow cover in 50 and 300 year old subalpine forests. Biogeochemistry 73:93-107. https://doi.org/10.1007/s10533-004-1990-0
  8. IGBP. 1998. Terrestrial Carbon Working Group. The terrestrial carbon cycle: Implications for the Kyoto Protocol. Science 280:1393-1394. https://doi.org/10.1126/science.280.5368.1393
  9. IPCC. 2001. Climate change 2001. A report of working group I of the intergovernmental panel on climate change. Cambridge University Press. Cambridge.
  10. IPCC. 2007. Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press. Cambridge.
  11. Koji Dairaku, Seita Emori and Taikan Oki. 2004. Rainfall Amount, Intensity, Duration and Frequency Relationships in the Mae Chaem Watershed in Southeast Asia. J. Hydrometeor. 5:458-470. https://doi.org/10.1175/1525-7541(2004)005<0458:RAIDAF>2.0.CO;2
  12. Lee, Misun, Kaneyuki Nakane, Takayuki Nakatsubo and Hiroshi Koizumi. 2003. Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant Soil. 25:311-318.
  13. Nakene K, M Yamamoto and H Tsubota. 1983. Estimation of root respiration rate in a mature forest ecosystem. Jap. J. Ecol. 33:397-408.
  14. Pyo JH, SU. Kim and HT. Mun. 2003. A study on the carbon budget in Pinus koreansis plantation. Korean J. Ecol. 26:129-134. https://doi.org/10.5141/JEFB.2003.26.3.129
  15. Rachhpal SJ, B Andrew, DN Michael, GG David and N Zoran. 2008. Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand. Global Change Biol. 14:1305-1318. https://doi.org/10.1111/j.1365-2486.2008.01573.x
  16. Raich JW and WH Schlesinger. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44:81-99.
  17. Rosenzweig C and D Hillel. 1998. Climate change and the global harvest. Oxford University Press. New York.
  18. Suh SU, YM Chun, NY Chae, J Kim, JH Lim, M Yokozawa, MS Lee and JS Lee. 2006. A chamber system with automatic opening and closing for continuously measuring soil respiration based on an open-flow dynamic method. Ecol. Res. 21:405-414. https://doi.org/10.1007/s11284-005-0137-7
  19. Tami K, Y. Kominami, T. Miyama, Y. Goto and Y. Ohtani. 2008. Topographical effects on soil respiration in a deciduous forest-The case of weathered granite region in Southern Kyoto Prefecture. J. Agricul. Meteorol. 64:512-222.
  20. Waring RH and SW Running. 1998. Forest ecosystems: analysis at multiple scales. Academic Press.
  21. Zhou T, P Shi, D Hui and Y Luo. 2009. Global pattern of temperature sensitivity of soil heterotrophic respiration ($Q_{10}$) and its implications for carbon-climate feedback. J. Geophys. Res. 114:1-9.