DOI QR코드

DOI QR Code

A Study on Characteristics of Lincomycin Degradation by Optimized TiO2/HAP/Ge Composite using Mixture Analysis

혼합물분석을 통해 최적화된 TiO2/HAP/Ge 촉매를 이용한 Lincomycin 제거특성 연구

  • Kim, Dongwoo (Kyonggi University, Department of Environmental Energy Systems Engineering) ;
  • Chang, Soonwoong (Kyonggi University, Department of Environmental Energy Systems Engineering)
  • Received : 2013.10.17
  • Accepted : 2013.11.30
  • Published : 2014.01.01

Abstract

In this study, it was found that determined the photocatalytic degradation of antibiotics (lincomycin, LM) with various catalyst composite of titanium dioxide ($TiO_2$), hydroxyapatite (HAP) and germanium (Ge) under UV-A irradiation. At first, various type of complex catalysts were investigated to compare the enhanced photocatalytic potential. It was observed that in order to obtain the removal efficiencies were $TiO_2/HAP/Ge$ > $TiO_2/Ge$ > $TiO_2/HAP$. The composition of $TiO_2/HAP/Ge$ using a statistical approach based on mixture analysis design, one of response surface method was investigated. The independent variables of $TiO_2$ ($X_1$), HAP ($X_2$) and Ge ($X_3$) which consisted of 6 condition in each variables was set up to determine the effects on LM ($Y_1$) and TOC ($Y_2$) degradation. Regression analysis on analysis of variance (ANOVA) showed significant p-value (p < 0.05) and high coefficients for determination value ($R^2$ of $Y_1=99.28%$ and $R^2$ of $Y_2=98.91%$). Contour plot and response curve showed that the effects of $TiO_2/HAP/Ge$ composition for LM degradation under UV-A irradiation. And the estimated optimal composition for TOC removal ($Y_2$) were $X_1=0.6913$, $X_2=0.2313$ and $X_3=0.0756$ by coded value. By comparison with actual applications, the experimental results were found to be in good agreement with the model's predictions, with mean results for LM and TOC removal of 99.2% and 49.3%, respectively.

본 연구에서는 UV-A 조사를 통해 titanium dioxide($TiO_2$), hydroxyapatite(HAP)와 germanium(Ge)의 다양한 복합촉매를 통한 항생제(lincomycin, LM)의 광촉매 제거를 조사하였다. 우선, 다양한 복합촉매의 향상된 광촉매능을 비교하였고, 도출된 제거효율은 $TiO_2/HAP/Ge$ > $TiO_2/Ge$ > $TiO_2/HAP$ 순으로 관찰되었다. $TiO_2/HAP/Ge$의 조성은 반응표면법의 하나인 혼합물분석(mixture analysis)에 기초하여 통계적 방안이 수행되었다. 각 인자별 6개의 조건을 포함하도록 설정한 독립변수 $TiO_2(X_1)$, HAP($X_2$)와 Ge($X_3$)의 LM($Y_1$)과 TOC($Y_2$) 제거에 대한 영향을 살펴보았다. 분산분석(ANOVA)의 회귀분석항은 유의한 p값(p<0.05)과 높은 결정계수 값($R^2$ of $Y_1=99.28%$ and $R^2$ of $Y_2=98.91%$)을 나타냈다. 등고선도와 반응곡선을 통해 UV-A 조사조건에서 $TiO_2$/HAP/Ge 조성에 따른 LM의 제거를 나타냈다. TOC($Y_2$) 제거를 기준으로 도출된 최적조성비는 코드화 값으로 $X_1=0.6913$, $X_2=0.2313$$X_3=0.0756$으로 나타났다. 실제 적용에 따른 비교 실험 결과는 LM과 TOC의 평균제거율이 각각 99.2%와 49.3%로 나타나 모델의 예측과 잘 부합하였다.

Keywords

References

  1. Bautitz, I. R. and Nogueira, R. F. P. (2010), Photodegradation of lincomycin and diazepam in sewage treatment plant effluent by photo-Fenton process, Catalysis Today, Vol. 151, No. 1-2, pp. 94-99. https://doi.org/10.1016/j.cattod.2010.02.018
  2. Chen, W., Ding, Y., Johnston, C. T., Teppen, B. J., Boyd, S. A. and LI, H. (2010), Reaction of lincosamide antibiotics with manganese oxide in aqueous solution, Environmental Science and Technology. Vol. 44, No. 12, pp. 4486-4492. https://doi.org/10.1021/es1000598
  3. Chun, S. Y. and Chang, S. W. (2011a), Kinetic study of adsorption and photocatalysis on sulfamethoxazole degradation by $TiO_2$/HAP media, Korean Society of Hazard Mitigation, Vol. 11, No. 6, pp. 325-330 (in Korean). https://doi.org/10.9798/KOSHAM.2011.11.6.325
  4. Chun, S. Y. and Chang, S. W. (2011b), Statistical analysis of the influence of inorganic anions on MTBE decomposition by photocatalysis(UV/$H_2O_2$), Korean Geo-environmental Society, Vol. 12, No. 10, pp. 57-62 (in Korean).
  5. González, O., Sans, C. and Esplugas, S. (2007), Sulfamethoxazole abatement by photo-Fenton: toxicity, inhibition and biodegradability assessment of intermediates, Journal of Hazardous Materials, Vol. 146, No. 3, pp. 459-464. https://doi.org/10.1016/j.jhazmat.2007.04.055
  6. Halling-Sorensen, B., Nielsen, S. N., Lanzky, P. F., Ingerslev, F., Lutzhoft, H. C. H. and Jorgensen, S. E. (1998), Occurrence, fate and effects of pharmaceutical substances in the environmenta review, Chemosphere, Vol. 36, No. 2, pp. 357-393. https://doi.org/10.1016/S0045-6535(97)00354-8
  7. Homem, V. and Santos, L. (2011), Degradation and removal methods of antibiotics from aqueous matrices - a review, Journal of Environmental Management, Vol. 92, No. 10, pp. 2304-2347. https://doi.org/10.1016/j.jenvman.2011.05.023
  8. Joss, A., Zabczynski, S., Gobel, A., Hoffmann, B., Loffler, D., McArdell, C. S., Ternes, T. A. and Siegrist, H. (2006), Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme, Water Research, Vol. 40, No. 8, pp. 1686-1696. https://doi.org/10.1016/j.watres.2006.02.014
  9. Kummerer, K., Alexy, R. and Kumpel, T. (2004), Assessment degradation of 18 antibiotics in the closed bottle test, Chemosphere, Vol. 57, No. 6, pp. 505-512. https://doi.org/10.1016/j.chemosphere.2004.06.024
  10. Ma, N., Zhang, Y., Quan, X., Fan, X. and Zhao, H. (2010), Performing a microfiltration integrated with photocatalysis using an Ag-$TiO_2$/HAP/$Al_2O_3$ composite membrane for water treatment: evaluating effectiveness for humic acid removal and anti-fouling properties, Water research, Vol. 44, No. 20, pp. 6104-6114. https://doi.org/10.1016/j.watres.2010.06.068
  11. Nasuhoglu, D., Yargeau, V. and Berk, D. (2011) Photo-removal of sulfamethoxazole (SMX) by photolytic and photocatalytic processes in a batch reactor under UV-C radiation (${\lambda}max$ = 254nm), Journal of Hazardous Materials, Vol. 186, No. 1, pp. 67-75. https://doi.org/10.1016/j.jhazmat.2010.10.080
  12. Ouyang, S., Kikugawa, N., Zou, Z. and Ye, J. (2009), Effective decolorizations and mineralizations of organic dyes over a silver germanium oxide photocatalyst under indoor-illumination irradiation, Applied Catalysis A: General, Vol. 366, No. 2, pp. 309-314. https://doi.org/10.1016/j.apcata.2009.07.015
  13. Pushpakanth, S., Srinivasan, B., Sreedhar, B. and Sastry, T. P. (2008), An in situ approach to prepare nanorods of titaniahydroxyapatite ($TiO_2$-HAp) nanocomposite by microwave hydrothermal technique, Materials Chemistry and Physics, Vol. 107, No. 2-3, pp. 492-498. https://doi.org/10.1016/j.matchemphys.2007.08.029
  14. Tsukada, M., Wakamura, M., Yoshida, N. and Watanabe, T. (2011), Band gap and photocatalytic properties of Ti-substituted hydroxyapatite: Comparison with anatase-$TiO_2$, Journal of Molecular Catalysis A: Chemical, Vol. 338, No. 1-2. pp. 18-23.
  15. Wang, J., Li, C., Luan, X., Li, J., Wang, B., Zhang, L., Xu, R. and Zhang, X. (2010), Investigation on solar photocatalytic activity of $TiO_2$ loaded composite: $TiO_2$/Skeleton, $TiO_2$/Dens and $TiO_2$/HAP, Journal of Molecular Catalysis A: Chemical , Vol. 320, No. 1-2, pp. 62-67. https://doi.org/10.1016/j.molcata.2010.01.004
  16. Zuccato, E., Catiglioni, S. and Fanelli, R. (2005), Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment, Journal of Hazardous Materials, Vol. 122, No. 3, pp. 205-209. https://doi.org/10.1016/j.jhazmat.2005.03.001