DOI QR코드

DOI QR Code

Comparison of Various Transfection Methods in Human and Bovine Cultured Cells

  • Jin, Longxun (Cellular Reprogramming & Embryo Biotechnology Laboratory, Dental Research Institute and School of Dentistry, Seoul National University) ;
  • Kim, Daehwan (Cellular Reprogramming & Embryo Biotechnology Laboratory, Dental Research Institute and School of Dentistry, Seoul National University) ;
  • Roh, Sangho (Cellular Reprogramming & Embryo Biotechnology Laboratory, Dental Research Institute and School of Dentistry, Seoul National University)
  • Received : 2014.09.15
  • Accepted : 2014.11.24
  • Published : 2014.12.31

Abstract

Transfection is a gene delivery tool that is a popular means of manipulating cellular properties, such as induced pluripotent stem cell (iPSC) generation by reprogramming factors (Yamanaka factors). However, the efficiency of transfection needs to be improved. In the present study, three transfection protocols - non-liposomal transfection (NLT), magnetofection and electroporation - were compared by analysis of their transfection efficiencies and cell viabilities using human dental pulp cells (hDPC) and bovine fetal fibroblasts (bFF) as cell sources. Enhanced green fluorescent protein gene was used as the delivery indicator. For magnetofection, Polymag reagent was administrated. NLT, FuGENE-HD and X-treme GENE 9 DNA transfection reagents were used for NLT. For electroporation, the $Neon^{TM}$ and $NEPA21^{TM}$ electroporators were tested. $Neon^{TM}$ electroporation showed highest transfection efficiency when compared with NLT, magnetofection, and $NEPA21^{TM}$ electroporation, with transfection efficiency of about 33% in hDPC and 50% in bFF, based on viable cell population in each cell type. These results suggest that transfection by $Neon^{TM}$ electroporation can be used to deliver foreign genes efficiently in human and bovine somatic cells.

Keywords

References

  1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663-676. https://doi.org/10.1016/j.cell.2006.07.024
  2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861-872. https://doi.org/10.1016/j.cell.2007.11.019
  3. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917-1920. https://doi.org/10.1126/science.1151526
  4. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322:949-953. https://doi.org/10.1126/science.1164270
  5. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science. 2008;322:945-949. https://doi.org/10.1126/science.1162494
  6. Pagano JS, Vaheri A. Enhancement of infectivity of poliovirus RNA with diethylaminoethyl-dextran (DEAE-D). Arch Gesamte Virusforsch. 1965;17:456-464. https://doi.org/10.1007/BF01241201
  7. Graham FL, van der Eb AJ. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973;52:456-467. https://doi.org/10.1016/0042-6822(73)90341-3
  8. Pellicer A, Robins D, Wold B, Sweet R, Jackson J, Lowy I, Roberts JM, Sim GK, Silverstein S, Axel R. Altering genotype and phenotype by DNA-mediated gene transfer. Science. 1980;209:1414-1422. https://doi.org/10.1126/science.7414320
  9. Scangos G, Ruddle FH. Mechanisms and applications of DNA-mediated gene transfer in mammalian cells - a review. Gene. 1981;14:1-10. https://doi.org/10.1016/0378-1119(81)90143-8
  10. Pagano RE, Huang L. Interaction of phospholipid vesicles with cultured mammalian cells. II. Studies of mechanism. J Cell Biol. 1975;67:49-60. https://doi.org/10.1083/jcb.67.1.49
  11. Asgharian A, Banan M, Najmabadi H. Optimizing A Lipocomplex-Based Gene Transfer Method into HeLa Cell Line. Cell J. 2014;15:372-377.
  12. Wong TK, Neumann E. Electric field mediated gene transfer. Biochem Biophys Res Commun. 1982;107:584-587. https://doi.org/10.1016/0006-291X(82)91531-5
  13. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982;1:841-845.
  14. Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297-7301. https://doi.org/10.1073/pnas.92.16.7297
  15. Kim TI, Seo HJ, Choi JS, Yoon JK, Baek JU, Kim K, Park JS. Synthesis of biodegradable cross-linked poly(beta-amino ester) for gene delivery and its modification, inducing enhanced transfection efficiency and stepwise degradation. Bioconjug Chem. 2005;16:1140-1148. https://doi.org/10.1021/bc0497012
  16. Krotz F, de Wit C, Sohn HY, Zahler S, Gloe T, Pohl U, Plank C. Magnetofection - a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther. 2003;7:700-710. https://doi.org/10.1016/S1525-0016(03)00065-0
  17. Namgung R, Singha K, Yu MK, Jon S, Kim YS, Ahn Y, Park IK, Kim WJ. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials. 2010;31:4204-4213. https://doi.org/10.1016/j.biomaterials.2010.01.123
  18. Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, Gansbacher B, Plank C. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 2002;9:102-109. https://doi.org/10.1038/sj.gt.3301624
  19. Janeczek A, Zimna A, Rozwadowska N, Fraczek M, Kucharzewska P, Rucinski M, Mietkiewski T, Kolanowski T, Malcher A, Kurpisz M. Genetically modified human myoblasts with eNOS may improve regenerative ability of myogenic stem cells to infarcted heart. Kardiol Pol. 2013;71:1048-1058. https://doi.org/10.5603/KP.2013.0260
  20. Uchida S, Itaka K, Nomoto T, Endo T, Matsumoto Y, Ishii T, Kataoka K. An injectable spheroid system with genetic modification for cell transplantation therapy. Biomaterials. 2014;35:2499-2506. https://doi.org/10.1016/j.biomaterials.2013.12.012
  21. Gresch O, Engel FB, Nesic D, Tran TT, England HM, Hickman ES, Korner I, Gan L, Chen S, Castro-Obregon S, Hammermann R, Wolf J, Muller-Hartmann H, Nix M, Siebenkotten G, Kraus G, Lun K. New non-viral method for gene transfer into primary cells. Methods. 2004;33:151-163. https://doi.org/10.1016/j.ymeth.2003.11.009
  22. Oliveira RR, Carvalho DM, Lisauskas S, Mello E, Vianna GR, Dode MA, Rumpf R, Aragao FJ, Rech EL. Effectiveness of liposomes to transfect livestock fibroblasts. Genet Mol Res. 2005;4:185-196.
  23. Maurisse R, De Semir D, Emamekhoo H, Bedayat B, Abdolmohammadi A, Parsi H, Gruenert DC. Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnol. 2010;10:9. https://doi.org/10.1186/1472-6750-10-9
  24. Gartner A, Collin L, Lalli G. Nucleofection of primary neurons. Methods Enzymol. 2006;406:374-388. https://doi.org/10.1016/S0076-6879(06)06027-7
  25. Kanayama N, Fukushima S, Nishiyama N, Itaka K, Jang WD, Miyata K, Yamasaki Y, Chung UI, Kataoka K. A PEG-based biocompatible block catiomer with high buffering capacity for the construction of polyplex micelles showing efficient gene transfer toward primary cells. Chem Med Chem. 2006;1:439-444. https://doi.org/10.1002/cmdc.200600008
  26. Drews K, Jozefczuk J, Prigione A, Adjaye J. Human induced pluripotent stem cells--from mechanisms to clinical applications. J Mol Med (Berl). 2012;90:735-745. https://doi.org/10.1007/s00109-012-0913-0
  27. Merkl C, Saalfrank A, Riesen N, Kuhn R, Pertek A, Eser S, Hardt MS, Kind A, Saur D, Wurst W, Iglesias A, Schnieke A. Efficient generation of rat induced pluripotent stem cells using a non-viral inducible vector. PLoS One. 2013;8:e55170. https://doi.org/10.1371/journal.pone.0055170
  28. Malaver-Ortega LF, Sumer H, Liu J, Verma PJ. The state of the art for pluripotent stem cells derivation in domestic ungulates. Theriogenology. 2012;78:1749-1762. https://doi.org/10.1016/j.theriogenology.2012.03.031
  29. Gonzalez F, Barragan Monasterio M, Tiscornia G, Montserrat Pulido N, Vassena R, Batlle Morera L, Rodriguez Piza I, Izpisua Belmonte JC. Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc Natl Acad Sci USA. 2009;106:8918-8922. https://doi.org/10.1073/pnas.0901471106
  30. Montserrat N, Garreta E, Gonzalez F, Gutierrez J, Eguizabal C, Ramos V, Borros S, Izpisua Belmonte JC. Simple generation of human induced pluripotent stem cells using poly-beta-amino esters as the non-viral gene delivery system. J Biol Chem. 2011;286:12417-12428. https://doi.org/10.1074/jbc.M110.168013
  31. Lee CH, Kim JH, Lee HJ, Jeon K, Lim H, Choi Hy, Lee ER, Park SH, Park JY, Hong S, Kim S, Cho SG. The generation of iPS cells using non-viral magnetic nanoparticle based transfection. Biomaterials. 2011;32:6683-6691. https://doi.org/10.1016/j.biomaterials.2011.05.070
  32. Cao F, Xie X, Gollan T, Zhao L, Narsinh K, Lee RJ, Wu JC. Comparison of gene-transfer efficiency in human embryonic stem cells. Mol Imaging Biol. 2010;12:15-24. https://doi.org/10.1007/s11307-009-0236-x
  33. KreissP, CameronB, RangaraR, MailheP, Aguerre-CharriolO, AiriauM, SchermanD, CrouzetJ, PitardB. Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. Nucleic Acids Res. 1999;27:3792-3798. https://doi.org/10.1093/nar/27.19.3792
  34. Xu Y, Wang J, Mao R, Tang X, Huang R, Wang R, Lin Y. Development Course and an Application Strategy for Induced Pluripotent Stem Cells in Regenerative Medicine. Curr Stem Cell Res Ther. 2014;9:244-253. https://doi.org/10.2174/1574888X09666140213202227
  35. Yehezkel S, Rebibo-Sabbah A, Segev Y, Tzukerman M, Shaked R, Huber I, Gepstein L, Skorecki K, Selig S. Reprogramming of telomeric regions during the generation of human induced pluripotent stem cells and subsequent differentiation into fibroblast-like derivatives. Epigenetics. 2011;6:63-75. https://doi.org/10.4161/epi.6.1.13390
  36. Ko HC, Gelb BD. Concise Review: Drug Discovery in the Age of the Induced Pluripotent Stem Cell. Stem Cells Transl Med. 2014;3:500-509. https://doi.org/10.5966/sctm.2013-0162
  37. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313-317. https://doi.org/10.1038/nature05934
  38. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K, Shibata T, Kunisada T, Takahashi M, Takahashi J, Saji H, Yamanaka S. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8:409-412. https://doi.org/10.1038/nmeth.1591
  39. Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, Goshima N, Yamanaka S. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013;31:458-466. https://doi.org/10.1002/stem.1293
  40. Xenariou S1, Griesenbach U, Ferrari S, Dean P, Scheule RK, Cheng SH, Geddes DM, Plank C, Alton EW. Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo. Gene Ther. 2006;13:1545-1552. https://doi.org/10.1038/sj.gt.3302803
  41. Subramanian M, Lim J, Dobson J. Enhanced nanomagnetic gene transfection of human prenatal cardiac progenitor cells and adult cardiomyocytes. PLoS One. 2013;8:e69812. https://doi.org/10.1371/journal.pone.0069812
  42. Schwerdt JI, Goya GF, Calatayud MP, Herenu CB, Reggiani PC, Goya RG. Magnetic field-assisted gene delivery: achievements and therapeutic potential. Curr Gene Ther. 2012;12:116-126. https://doi.org/10.2174/156652312800099616
  43. Poste G, Papahadjopoulos D. Lipid vesicles as carriers for introducing materials into cultured cells: influence of vesicle lipid composition on mechanism(s) of vesicle incorporation into cells. Proc Natl Acad Sci USA. 1976;73:1603-1607. https://doi.org/10.1073/pnas.73.5.1603
  44. Liu J, Jones KL, Sumer H, Verma PJ. Stable transgene expression in human embryonic stem cells after simple chemical transfection. Mol Reprod Dev. 2009;76:580-586. https://doi.org/10.1002/mrd.20983
  45. Veelken H1, Jesuiter H, Mackensen A, Kulmburg P, Schultze J, Rosenthal F, Mertelsmann R, Lindemann A. Primary fibroblasts from human adults as target cells for ex vivo transfection and gene therapy. Hum Gene Ther. 1994;5:1203-1210. https://doi.org/10.1089/hum.1994.5.10-1203
  46. Yalvac ME, Ramazanoglu M, Gumru OZ, Sahin F, Palotas A, Rizvanov AA. Comparison and optimisation of transfection of human dental follicle cells, a novel source of stem cells, with different chemical methods and electro-poration. Neurochem Res. 2009;34:1272-1277. https://doi.org/10.1007/s11064-008-9905-4
  47. Rizk A, Rabie BM. Electroporation for transfection and differentiation of dental pulp stem cells. Biores Open Access. 2013;2:155-162. https://doi.org/10.1089/biores.2012.0273
  48. Salimzadeh L, Jaberipour M, Hosseini A, Ghaderi A. Non-viral transfection methods optimized for gene delivery to a lung cancer cell line. Avicenna J Med Biotechnol. 2013;5:68-77.
  49. Bertram B, Wiese S, von Holst A. High-efficiency transfection and survival rates of embryonic and adult mouse neural stem cells achieved by electroporation. J Neurosci Methods. 2012;209:420-427. https://doi.org/10.1016/j.jneumeth.2012.06.024
  50. Yang X, Zhang S, Pang X, Fan M. Mineralized tissue formation by bone morphogenetic protein-7-transfected pulp stem cells. J Endod. 2012;38:170-176. https://doi.org/10.1016/j.joen.2011.10.010
  51. Liu X, Sun H, Qi J, Wang L, He S, Liu J, Feng C, Chen C, Li W, Guo Y, Qin D, Pan G, Chen J, Pei D, Zheng H. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nat Cell Biol. 2013;15:829-838. https://doi.org/10.1038/ncb2765