DOI QR코드

DOI QR Code

The influence of thread geometry on implant osseointegration under immediate loading: a literature review

  • Ryu, Hyo-Sook (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Namgung, Cheol (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Jong-Ho (Department of Oral Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lim, Young-Jun (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University)
  • 투고 : 2014.06.10
  • 심사 : 2014.10.06
  • 발행 : 2014.12.31

초록

Implant success is achieved by the synergistic combination of numerous biomechanical factors. This report examines the mechanical aspect of implants. In particular, it is focused on macrodesign such as thread shape, pitch, width and depth, and crestal module of implants. This study reviews the literature regarding the effect of implant thread geometry on primary stability and osseointegration under immediate loading. The search strategy included both in vitro and in vivo studies published in the MEDLINE database from January 2000 to June 2014. Various geometrical parameters are analyzed to evaluate their significance for optimal stress distribution, implant surface area, and bone remodeling responses during the process of osseointegration.

키워드

참고문헌

  1. Haas R, Mensdorff-Pouilly N, Mailath G, Watzek G. Branemark single tooth implants: a preliminary report of 76 implants. J Prosthet Dent 1995;73:274-9. https://doi.org/10.1016/S0022-3913(05)80205-7
  2. Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JY. Clinical complications with implants and implant prostheses. J Prosthet Dent 2003;90:121-32. https://doi.org/10.1016/S0022-3913(03)00212-9
  3. Fugazzotto PA. Success and failure rates of osseointegrated implants in function in regenerated bone for 72 to 133 months. Int J Oral Maxillofac Implants 2005;20:77-83.
  4. Atieh MA, Atieh AH, Payne AG, Duncan WJ. Immediate loading with single implant crowns: a systematic review and meta-analysis. Int J Prosthodont 2009;22:378-87.
  5. Cochran DL, Morton D, Weber HP. Consensus statements and recommended clinical procedures regarding loading protocols for endosseous dental implants. Int J Oral Maxillofac Implants 2004;19:109-13.
  6. Glauser R, Zembic A, Hammerle CH. A systematic review of marginal soft tissue at implants subjected to immediate loading or immediate restoration. Clin Oral Implants Res 2006;17:82-92. https://doi.org/10.1111/j.1600-0501.2006.01355.x
  7. Romanos GE, Toh CG, Siar CH, Swaminathan D. Histologic and histomorphometric evaluation of peri-implant bone subjected to immediate loading: an experimental study with Macaca fascicularis. Int J Oral Maxillofac Implants 2002;17:44-51.
  8. Ibanez JC, Jalbout ZN. Immediate loading of osseotite implants: two-year results. Implant Dent 2002;11:128-36. https://doi.org/10.1097/00008505-200204000-00013
  9. Rocci A, Rocci M, Rocci C, Scoccia A, Gargari M, Martignoni M, Gottlow J, Sennerby L. Immediate loading of Branemark system TiUnite and machined-surface implants in the posterior mandible, part II: a randomized open-ended 9-year follow-up clinical trial. Int J Oral Maxillofac Implants 2013;28:891-5. https://doi.org/10.11607/jomi.2397
  10. Ostman PO, Hellman M, Sennerby L. Direct implant loading in the edentulous maxilla using a bone density-adapted surgical protocol and primary implant stability criteria for inclusion. Clin Implant Dent Relat Res 2005;7:S60-9. https://doi.org/10.1111/j.1708-8208.2005.tb00076.x
  11. Sennerby L, Meredith N. Implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications. Periodontol 2000 2008;47:51-66. https://doi.org/10.1111/j.1600-0757.2008.00267.x
  12. Abuhussein H, Pagni G, Rebaudi A, Wang HL. The effect of thread pattern upon implant osseointegration. Clin Oral Implants Res 2010;21:129-36. https://doi.org/10.1111/j.1600-0501.2009.01800.x
  13. Boggan RS, Strong JT, Misch CE, Bidez MW. Influence of hex geometry and prosthetic table width on static and fatigue strength of dental implants. J Prosthet Dent 1999;82:436-40. https://doi.org/10.1016/S0022-3913(99)70030-2
  14. Hansson S, Werke M. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomech 2003;36:1247-58. https://doi.org/10.1016/S0021-9290(03)00164-7
  15. Prendergast PJ, Huiskes R. Microdamage and osteocyte-lacuna strain in bone: a microstructural finite element analysis. J Biomech Eng 1996;118:240-6. https://doi.org/10.1115/1.2795966
  16. Brunski JB. In vivo bone response to biomechanical loading at the bone/dental-implant interface. Adv Dent Res 1999;13:99-119. https://doi.org/10.1177/08959374990130012301
  17. Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff›s law: the bone modeling problem. Anat Rec 1990;226:403-13. https://doi.org/10.1002/ar.1092260402
  18. Chang PK, Chen YC, Huang CC, Lu WH, Chen YC, Tsai HH. Distribution of micromotion in implants and alveolar bone with different thread profiles in immediate loading: a finite element study. Int J Oral Maxillofac Implants 2012;27:e96-101.
  19. Eraslan O, Inan O. The effect of thread design on stress distribution in a solid screw implant: a 3D finite element analysis. Clin Oral Investig 2010;14:411-6. https://doi.org/10.1007/s00784-009-0305-1
  20. Steigenga J, Al-Shammari K, Misch C, Nociti FH Jr, Wang HL. Effects of implant thread geometry on percentage of osseointegration and resistance to reverse torque in the tibia of rabbits. J Periodontol 2004;75:1233-41. https://doi.org/10.1902/jop.2004.75.9.1233
  21. Geng JP, Ma QS, Xu W, Tan KB, Liu GR. Finite element analysis of four thread-form configurations in a stepped screw implant. J Oral Rehabil 2004;31:233-9. https://doi.org/10.1046/j.0305-182X.2003.01213.x
  22. Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, Choi YC, Baik HK, Ku Y, Kim MH. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 2002;29:565-74. https://doi.org/10.1046/j.1365-2842.2002.00891.x
  23. McAllister BS, Cherry JE, Kolinski ML, Parrish KD, Pumphrey DW, Schroering RL. Two-year evaluation of a variable-thread tapered implant in extraction sites with immediate temporization: a multicenter clinical trial. Int J Oral Maxillofac Implants 2012;27:611-8.
  24. Arnhart C, Kielbassa AM, Martinez-de Fuentes R, Goldstein M, Jackowski J, Lorenzoni M, Maiorana C, Mericske-Stern R, Pozzi A, Rompen E, Sanz M, Strub JR. Comparison of variable-thread tapered implant designs to a standard tapered implant design after immediate loading. A 3-year multicentre randomised controlled trial. Eur J Oral Implantol 2012;5:123-36.
  25. Ivanoff CJ, Grondahl K, Sennerby L, Bergstrom C, Lekholm U. Influence of variations in implant diameters: a 3- to 5-year retrospective clinical report. Int J Oral Maxillofac Implants 1999;14:173-80.
  26. Misch CE, Steignga J, Barboza E, Misch-Dietsh F, Cianciola LJ, Kazor C. Short dental implants in posterior partial edentulism: a multicenter retrospective 6-year case series study. J Periodontol 2006;77:1340-7. https://doi.org/10.1902/jop.2006.050402
  27. Steigenga JT, al-Shammari KF, Nociti FH, Misch CE, Wang HL. Dental implant design and its relationship to long-term implant success. Implant Dent 2003;12:306-17. https://doi.org/10.1097/01.ID.0000091140.76130.A1
  28. Orsini E, Giavaresi G, Trire A, Ottani V, Salgarello S. Dental implant thread pitch and its influence on the osseointegration process: an in vivo comparison study. Int J Oral Maxillofac Implants 2012;27:383-92.
  29. Chung SH, Heo SJ, Koak JY, Kim SK, Lee JB, Han JS, Han CH, Rhyu IC, Lee SJ. Effects of implant geometry and surface treatment on osseointegration after functional loading: a dog study. J Oral Rehabil 2008;35:229-36. https://doi.org/10.1111/j.1365-2842.2006.01653.x
  30. Ma P, Liu HC, Li DH, Lin S, Shi Z, Peng QJ. Influence of helix angle and density on primary stability of immediately loaded dental implants: three-dimensional finite element analysis. Zhonghua Kou Qiang Yi Xue Za Zhi 2007;42:618-21.
  31. Motoyoshi M, Yano S, Tsuruoka T, Shimizu N. Biomechanical effect of abutment on stability of orthodontic mini-implant. A finite element analysis. Clin Oral Implants Res 2005;16:480-5. https://doi.org/10.1111/j.1600-0501.2005.01130.x
  32. Lan TH, Du JK, Pan CY, Lee HE, Chung WH. Biomechanical analysis of alveolar bone stress around implants with different thread designs and pitches in the mandibular molar area. Clin Oral Investig 2012;16:363-9. https://doi.org/10.1007/s00784-011-0517-z
  33. Kong L, Liu BL, Hu KJ, Li DH, Song YL, Ma P, Yang J. Optimized thread pitch design and stress analysis of the cylinder screwed dental implant. Hua Xi Kou Qiang Yi Xue Za Zhi 2006;24:509-12, 515.
  34. Misch CE, Strong T, Bidez MW. Scientific rationale for dental implant design. In: Misch CE, ed. Contemporary Implant Dentistry. 3rd ed. St. Louis; Mosby; 2008. p. 200-29.
  35. Ao J, Li T, Liu Y, Ding Y, Wu G, Hu K, Kong L. Optimal design of thread height and width on an immediately loaded cylinder implant: a finite element analysis. Comput Biol Med 2010;40:681-6. https://doi.org/10.1016/j.compbiomed.2009.10.007
  36. Kong L, Hu K, Li D, Song Y, Yang J, Wu Z, Liu B. Evaluation of the cylinder implant thread height and width: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2008;23:65-74.
  37. Quirynen M, Naert I, van Steenberghe D. Fixture design and overload influence marginal bone loss and fixture success in the Branemark system. Clin Oral Implants Res 1992;3:104-11. https://doi.org/10.1034/j.1600-0501.1992.030302.x
  38. Shimada E, Pilliar RM, Deporter DA, Schroering R, Atenafu E. A pilot study to assess the performance of a partially threaded sintered porous-surfaced dental implant in the dog mandible. Int J Oral Maxillofac Implants 2007;22:948-54.
  39. Hermann JS, Schoolfield JD, Nummikoski PV, Buser D, Schenk RK, Cochran DL. Crestal bone changes around titanium implants: a methodologic study comparing linear radiographic with histometric measurements. Int J Oral Maxillofac Implants 2001;16:475-85.
  40. Hanggi MP, Hanggi DC, Schoolfield JD, Meyer J, Cochran DL, Hermann JS. Crestal bone changes around titanium implants. Part I: A retrospective radiographic evaluation in humans comparing two non-submerged implant designs with different machined collar lengths. J Periodontol 2005;76:791-802. https://doi.org/10.1902/jop.2005.76.5.791
  41. Vaillancourt H, Pilliar RM, McCammond D. Finite element analysis of crestal bone loss around porous-coated dental implants. J Appl Biomater 1995;6:267-82. https://doi.org/10.1002/jab.770060408
  42. Hansson S. The implant neck: smooth or provided with retention elements. A biomechanical approach. Clin Oral Implants Res 1999;10:394-405. https://doi.org/10.1034/j.1600-0501.1999.100506.x
  43. Chowdhary R, Halldin A, Jimbo R, Wennerberg A. Influence of micro threads alteration on osseointegration and primary stability of implants: an FEA and in vivo analysis in rabbits. Clin Implant Dent Relat Res 2013 Aug 27.
  44. Negri B, Calvo Guirado JL, Mate Sanchez de Val JE, Delgado Ruiz RA, Ramirez Fernandez MP, Barona Dorado C. Peri-implant tissue reactions to immediate nonocclusal loaded implants with different collar design: an experimental study in dogs. Clin Oral Implants Res 2014;25:e54-63. https://doi.org/10.1111/clr.12047
  45. Yun HJ, Park JC, Yun JH, Jung UW, Kim CS, Choi SH, Cho KS. A short-term clinical study of marginal bone level change around microthreaded and platform-switched implants. J Periodontal Implant Sci 2011;41:211-7. https://doi.org/10.5051/jpis.2011.41.5.211
  46. Song DW, Lee DW, Kim CK, Park KH, Moon IS. Comparative analysis of peri-implant marginal bone loss based on micro-thread location: a 1-year prospective study after loading. J Periodontol 2009;80:1937-44. https://doi.org/10.1902/jop.2009.090330
  47. Lee DW, Choi YS, Park KH, Kim CS, Moon IS. Effect of microthread on the maintenance of marginal bone level: a 3-year prospective study. Clin Oral Implants Res 2007;18:465-70. https://doi.org/10.1111/j.1600-0501.2007.01302.x
  48. Calvo-Guirado JL, Gomez-Moreno G, Aguilar-Salvatierra A, Guardia J, Delgado-Ruiz RA, Romanos GE. Marginal bone loss evaluation around immediate non-occlusal microthreaded implants placed in fresh extraction sockets in the maxilla: a 3-year study. Clin Oral Implants Res 2014 Jan 15.
  49. Amid R, Raoofi S, Kadkhodazadeh M, Movahhedi MR, Khademi M. Effect of microthread design of dental implants on stress and strain patterns: a three-dimensional finite element analysis. Biomed Tech (Berl) 2013;58:457-67.
  50. Schrotenboer J, Tsao YP, Kinariwala V, Wang HL. Effect of microthreads and platform switching on crestal bone stress levels: a finite element analysis. J Periodontol 2008;79:2166-72. https://doi.org/10.1902/jop.2008.080178

피인용 문헌

  1. The Effect of Hierarchical Micro/Nanotextured Titanium Implants on Osseointegration Immediately After Tooth Extraction in Beagle Dogs vol.19, pp.3, 2016, https://doi.org/10.1111/cid.12464
  2. Introducing the “Bone-Screw-Fastener” for improved screw fixation in orthopedic surgery: a revolutionary paradigm shift? vol.11, pp.1, 2017, https://doi.org/10.1186/s13037-017-0121-5
  3. Comparison Between Cortical Drill and Cortical Tap and Their Influence on Primary Stability of Macro-Thread Tapered Implant in Thin Crestal Cortical Bone and Low-Density Bone vol.26, pp.5, 2017, https://doi.org/10.1097/ID.0000000000000614
  4. Unravelling the effect of macro and microscopic design of dental implants on osseointegration: a randomised clinical study in minipigs vol.29, pp.7, 2018, https://doi.org/10.1007/s10856-018-6101-1
  5. ): A comparative surface analysis vol.15, pp.4, 2018, https://doi.org/10.1111/ijac.12854
  6. A Comparative Analysis of Standardised Threads for Use in Implants for Direct Skeletal Attachment of Limb Prosthesis: A Finite Element Analysis vol.2019, pp.1754-2103, 2019, https://doi.org/10.1155/2019/8027064
  7. Immediate functional loading of single implants: a multicenter study with 4 years of follow-up vol.12, pp.1, 2014, https://doi.org/10.15171/joddd.2018.005
  8. 3D printing of a novel dental implant abutment vol.12, pp.4, 2018, https://doi.org/10.15171/joddd.2018.047
  9. 하악 구치 단일임플란트 수복에서 임플란트 길이에 따른 치관-임플란트 비율이 임플란트안정성 및 변연골소실에 주는 영향 vol.34, pp.4, 2014, https://doi.org/10.14368/jdras.2018.34.4.280
  10. One-Year Results of a Randomized Controlled Clinical Trial of Immediately Loaded Short Implants Placed in the Lower Posterior Single Molar Using a Complete Digital Workflow vol.9, pp.7, 2014, https://doi.org/10.3390/app9071282
  11. Structuring of Bioceramics by Micro-Grinding for Dental Implant Applications vol.10, pp.5, 2019, https://doi.org/10.3390/mi10050312
  12. Fracture Strength and Osseointegration of an Ultrafine-Grained Titanium Mini Dental Implant after Macromorphology Optimization vol.5, pp.8, 2019, https://doi.org/10.1021/acsbiomaterials.9b00406
  13. New Dental Implant with 3D Shock Absorbers and Tooth-Like Mobility-Prototype Development, Finite Element Analysis (FEA), and Mechanical Testing vol.12, pp.20, 2014, https://doi.org/10.3390/ma12203444
  14. Influence of Implant Thread Morphology on Primary Stability: A Prospective Clinical Study vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/6974050
  15. Influence of Implant Design and Under-Preparation of the Implant Site on Implant Primary Stability. An In Vitro Study vol.17, pp.12, 2020, https://doi.org/10.3390/ijerph17124436
  16. Biomechanical Design Application on the Effect of Different Occlusion Conditions on Dental Implants with Different Positions-A Finite Element Analysis vol.10, pp.17, 2014, https://doi.org/10.3390/app10175826
  17. Fabrication and Use of a Customized Provisional Composite Abutment in Dental Practice vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/9929803
  18. Can barb thread design improve the pullout strength of bone screws? : a biomechanical study and finite element explanation vol.10, pp.2, 2014, https://doi.org/10.1302/2046-3758.102.bjr-2020-0072.r2
  19. In vitro assessment of a novel additive manufactured titanium implant abutment vol.13, pp.2, 2014, https://doi.org/10.4317/jced.57389
  20. The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation vol.10, pp.8, 2014, https://doi.org/10.3390/jcm10081641
  21. The Influence of the Implant Macrogeometry on Insertion Torque, Removal Torque, and Periotest Implant Primary Stability: A Mechanical Simulation on High-Density Artificial Bone vol.13, pp.5, 2014, https://doi.org/10.3390/sym13050776
  22. Stress shielding at the bone‐implant interface: Influence of surface roughness and of the bone‐implant contact ratio vol.39, pp.6, 2014, https://doi.org/10.1002/jor.24840
  23. Influence of the dental implant macrogeometry and threads design on primary stability: an in vitro simulation on artificial bone blocks vol.24, pp.11, 2014, https://doi.org/10.1080/10255842.2021.1875219
  24. Evaluation of Stress Distribution during Insertion of Tapered Dental Implants in Various Osteotomy Techniques: Three-Dimensional Finite Element Study vol.14, pp.24, 2021, https://doi.org/10.3390/ma14247547