DOI QR코드

DOI QR Code

Osteoblastic behavior to zirconium coating on Ti-6Al-4V alloy

  • Lee, Bo-Ah (School of Dentistry, Chonnam National University) ;
  • Kim, Hae-Jin (School of Dentistry, Chonnam National University) ;
  • Xuan, Yun-Ze (Department of Stomatology, Affiliated Hospital of Yanbian University) ;
  • Park, Yeong-Joon (School of Dentistry, Chonnam National University) ;
  • Chung, Hyun-Ju (School of Dentistry, Chonnam National University) ;
  • Kim, Young-Joon (School of Dentistry, Chonnam National University)
  • Received : 2014.04.22
  • Accepted : 2014.11.07
  • Published : 2014.12.31

Abstract

PURPOSE. The purpose of this study was to assess the surface characteristics and the biocompatibility of zirconium (Zr) coating on Ti-6Al-4V alloy surface by radio frequency (RF) magnetron sputtering method. MATERIALS AND METHODS. The zirconium films were developed on Ti-6Al-4V discs using RF magnetron sputtering method. Surface profile, surface composition, surface roughness and surface energy were evaluated. Electrochemical test was performed to evaluate the corrosion behavior. Cell proliferation, alkaline phosphatase (ALP) activity and gene expression of mineralized matrix markers were measured. RESULTS. SEM and EDS analysis showed that zirconium deposition was performed successfully on Ti-6Al-4V alloy substrate. Ti-6Al-4V group and Zr-coating group showed no significant difference in surface roughness (P>.05). Surface energy was significantly higher in Zr-coating group than in Ti-6Al-4V group (P<.05). No difference in cell morphology was observed between Ti-6Al-4V group and Zr-coating group. Cell proliferation was higher in Zr-coating group than Ti-6Al-4V group at 1, 3 and 5 days (P<.05). Zr-coating group showed higher ALP activity level than Ti-6Al-4V group (P<.05). The mRNA expressions of bone sialoprotein (BSP) and osteocalcin (OCN) on Zr-coating group increased approximately 1.2-fold and 2.1-fold respectively, compared to that of Ti-6Al-4V group. CONCLUSION. These results suggest that zirconium coating on Ti-6Al-4V alloy could enhance the early osteoblast responses. This property could make non-toxic metal coatings on Ti-6Al-4V alloy suitable for orthopedic and dental implants.

Keywords

References

  1. Park JB Lakes RS. Biomaterials: an introduction. 2nd ed. New York; Plenum Press; 1992. p. 89-92.
  2. Oshida Y. Bioscience and bioenginerring of titanium materials. 1st ed. New York; Elsevier Press; 2007. p. 11-24.
  3. Khan MA, Williams RL, Williams DF. In-vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials 1996;17:2117-26. https://doi.org/10.1016/0142-9612(96)00029-4
  4. Khan MA, Williams RL, Williams DF. Conjoint corrosion and wear in titanium alloys. Biomaterials 1999;20:765-72. https://doi.org/10.1016/S0142-9612(98)00229-4
  5. Matono Y, Nakagawa M, Matsuya S, Ishikawa K, Terada Y. Corrosion behavior of pure titanium and titanium alloys in various concentrations of Acidulated Phosphate Fluoride (APF) solutions. Dent Mater J 2006;25:104-12. https://doi.org/10.4012/dmj.25.104
  6. Okazaki Y, Gotoh E, Manabe T, Kobayashi K. Comparison of metal concentrations in rat tibia tissues with various metallic implants. Biomaterials 2004;25:5913-20. https://doi.org/10.1016/j.biomaterials.2004.01.064
  7. Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 2005;26:11-21. https://doi.org/10.1016/j.biomaterials.2004.02.005
  8. Gomes CC, Moreira LM, Santos VJ, Ramos AS, Lyon JP, Soares CP, Santos FV. Assessment of the genetic risks of a metallic alloy used in medical implants. Genet Mol Biol 2011;34:116-21. https://doi.org/10.1590/S1415-47572010005000118
  9. Liu C, Bi Q, Matthews A. Tribological and electrochemical performance of PVD TiN coatings on the femoral head of Ti-6Al-4V artificial hip joints. Surf Coat Technol 2003;163-164:597-604. https://doi.org/10.1016/S0257-8972(02)00630-8
  10. Arnould C, Volcke C, Lamarque C, Thiry PA, Delhalle J, Mekhalif Z. Titanium modified with layer-by-layer sol-gel tantalum oxide and an organodiphosphonic acid: a coating for hydroxyapatite growth. J Colloid Interface Sci 2009;336:497-503. https://doi.org/10.1016/j.jcis.2009.03.092
  11. Qian MA, St John DH, Frost MT. Effect of soluble and insoluble zirconium on the grain refinement of magnesium alloys. Mater Sci Forum 2003;419-422:593-8. https://doi.org/10.4028/www.scientific.net/MSF.419-422.593
  12. Samuel S, Nag S, Nasrazadani S, Ukirde V, El Bouanani M, Mohandas A, Nguyen K, Banerjee R. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications. J Biomed Mater Res A 2010;94:1251-6.
  13. Rosalbino F, Maccio D, Giannoni P, Quarto R, Saccone A. Study of the in vitro corrosion behavior and biocompatibility of Zr-2.5Nb and Zr-1.5Nb-1Ta (at%) crystalline alloys. J Mater Sci Mater Med 2011;22:1293-302. https://doi.org/10.1007/s10856-011-4301-z
  14. Duygulu O, Kaya AA, Oktay G, Sahin FC. Diffusion bonding of magnesium, zirconium and titanium as implant material. Mater Sci Forum 2007;546-549:417-20. https://doi.org/10.4028/www.scientific.net/MSF.546-549.417
  15. Gomez-Florit M, Xing R, Ramis JM, Taxt-Lamolle S, Haugen HJ, Lyngstadaas SP, Monjo M. Human gingival fibroblasts function is stimulated on machined hydrided titanium zirconium dental implants. J Dent 2014;42:30-8. https://doi.org/10.1016/j.jdent.2013.11.003
  16. Kurella A, Dahotre NB. Laser induced multi-scale textured zirconia coating on Ti-6Al-4V. J Mater Sci Mater Med 2006;17:565-72. https://doi.org/10.1007/s10856-006-8941-3
  17. Zhang S, Sun J, Xu Y, Qian S, Wang B, Liu F, Liu X. Adhesion, proliferation and differentiation of osteoblasts on zirconia films prepared by cathodic arc deposition. Biomed Mater Eng 2013;23:373-85.
  18. Sollazzo V, Pezzetti F, Scarano A, Piattelli A, Bignozzi CA, Massari L, Brunelli G, Carinci F. Zirconium oxide coating improves implant osseointegration in vivo. Dent Mater 2008;24:357-61. https://doi.org/10.1016/j.dental.2007.06.003
  19. Yang Y, Kim KH, Ong JL. A review on calcium phosphate coatings produced using a sputtering process--an alternative to plasma spraying. Biomaterials 2005;26:327-37. https://doi.org/10.1016/j.biomaterials.2004.02.029
  20. Nelea V, Morosanu C, Iliescu M, Mihilescu IN. Microstructure and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering. Surf Coat Technol 2003;173:315-22. https://doi.org/10.1016/S0257-8972(03)00729-1
  21. Wan T, Aoki H, Hikawa J, Lee JH. RF-magnetron sputtering technique for producing hydroxyapatite coating film on various substrates. Biomed Mater Eng 2007;17:291-7.
  22. van Oss CJ, Chaudhury MK, Good RJ. Monopolar surfaces. Adv Colloid Interface Sci 1987;28:35-64. https://doi.org/10.1016/0001-8686(87)80008-8
  23. Rajaraman R, Rounds DE, Yen SP, Rembaum A. A scanning electron microscope study of cell adhesion and spreading in vitro. Exp Cell Res 1974;88:327-39. https://doi.org/10.1016/0014-4827(74)90248-1
  24. Hanawa T, Sakamoto H, Tanaka Y. Biofunctional hybride of titanium with polymers. Mater Sci Forum 2007;539-543:563-6. https://doi.org/10.4028/www.scientific.net/MSF.539-543.563
  25. Kawahara H, Soeda Y, Niwa K, Takahashi M, Kawahara D, Araki N. In vitro study on bone formation and surface topography from the standpoint of biomechanics. J Mater Sci Mater Med 2004;15:1297-307. https://doi.org/10.1007/s10856-004-5738-0
  26. Lincks J, Boyan BD, Blanchard CR, Lohmann CH, Liu Y, Cochran DL, Dean DD, Schwartz Z. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 1998;19:2219-32. https://doi.org/10.1016/S0142-9612(98)00144-6
  27. Kawahara H, Soeda Y, Niwa K, Takahashi M, Kawahara D, Araki N. In vitro study on bone formation and surface topography from the standpoint of biomechanics. J Mater Sci Mater Med 2004;15:1297-307. https://doi.org/10.1007/s10856-004-5738-0
  28. Pesskova V, Kubies D, Hulejova H, Himmlova L. The influence of implant surface properties on cell adhesion and proliferation. J Mater Sci Mater Med 2007;18:465-73. https://doi.org/10.1007/s10856-007-2006-0
  29. Gerstenfeld LC, Chipman SD, Glowacki J, Lian JB. Expression of differentiated function by mineralizing cultures of chicken osteoblasts. Dev Biol 1987;122:49-60. https://doi.org/10.1016/0012-1606(87)90331-9
  30. Ganss B, Kim RH, Sodek J. Bone sialoprotein. Crit Rev Oral Biol Med 1999;10:79-98. https://doi.org/10.1177/10454411990100010401
  31. Hunter GK, Goldberg HA. Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci USA 1993;90:8562-5. https://doi.org/10.1073/pnas.90.18.8562
  32. Paredes R, Arriagada G, Cruzat F, Olate J, Van Wijnen A, Lian J, Stein G, Stein J, Montecino M. The Runx2 transcription factor plays a key role in the 1alpha,25-dihydroxy Vitamin D3-dependent upregulation of the rat osteocalcin (OC) gene expression in osteoblastic cells. J Steroid Biochem Mol Biol 2004;89-90:269-71. https://doi.org/10.1016/j.jsbmb.2004.03.076
  33. Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv 2011;29:739-67. https://doi.org/10.1016/j.biotechadv.2011.06.004

Cited by

  1. A comparative study of the bone contact to zirconium and titanium implants after 8 weeks of implantation in rabbit femoral condyles vol.106, pp.1, 2018, https://doi.org/10.1007/s10266-017-0296-3
  2. Zirconium Alloys for Orthopaedic and Dental Applications vol.20, pp.9, 2018, https://doi.org/10.1002/adem.201800207
  3. Plasma-Activated Tropoelastin Functionalization of Zirconium for Improved Bone Cell Response vol.2, pp.4, 2014, https://doi.org/10.1021/acsbiomaterials.6b00049
  4. Substrate-Regulated Growth of Plasma-Polymerized Films on Carbide-Forming Metals vol.32, pp.42, 2016, https://doi.org/10.1021/acs.langmuir.6b02901
  5. Effect of Er incorporation on structural and element distribution of Zr alloyed layers prepared using double glow plasma surface alloying vol.97, pp.3, 2019, https://doi.org/10.1080/00202967.2019.1603344
  6. Developing a New Beta‐Type of Ti–Si/Sn Alloys for Targeted Orthopedic Therapeutics: Assessments of Biological Characteristics vol.23, pp.2, 2014, https://doi.org/10.1002/adem.202000430