DOI QR코드

DOI QR Code

Techniques for dental implant nanosurface modifications

  • Pachauri, Preeti (Department of Prosthodontics, Faculty of Dentistry, Rama Dental College-Hospital & Research Centre) ;
  • Bathala, Lakshmana Rao (Department of Prosthodontics, Faculty of Dentistry, Lenora Institute of Dental Sciences) ;
  • Sangur, Rajashekar (Department of Prosthodontics, Faculty of Dentistry, Rama Dental College-Hospital & Research Centre)
  • 투고 : 2014.02.24
  • 심사 : 2014.08.29
  • 발행 : 2014.12.31

초록

PURPOSE. Dental implant has gained clinical success over last decade with the major drawback related to osseointegration as properties of metal (Titanium) are different from human bone. Currently implant procedures include endosseous type of dental implants with nanoscale surface characteristics. The objective of this review article is to summarize the role of nanotopography on titanium dental implant surfaces in order to improve osseointegration and various techniques that can generate nanoscale topographic features to titanium implants. MATERIALS AND METHODS. A systematic electronic search of English language peer reviewed dental literature was performed for articles published between December 1987 to January 2012. Search was conducted in Medline, PubMed and Google scholar supplemented by hand searching of selected journals. 101 articles were assigned to full text analysis. Articles were selected according to inclusion and exclusion criterion. All articles were screened according to inclusion standard. 39 articles were included in the analysis. RESULTS. Out of 39 studies, seven studies demonstrated that bone implant contact increases with increase in surface roughness. Five studies showed comparative evaluation of techniques producing microtopography and nanotopography. Eight studies concluded that osteoblasts preferably adhere to nano structure as compared to smooth surface. Six studies illustrated that nanotopography modify implant surface and their properties. Thirteen studies described techniques to produce nano roughness. CONCLUSION. Modification of dental osseous implants at nanoscale level produced by various techniques can alter biological responses that may improve osseointegration and dental implant procedures.

키워드

참고문헌

  1. Siegel RW, Fougere GE. Mechanical properties of Nano-phase metals. Nanostruct Mater 1995;6:205-16. https://doi.org/10.1016/0965-9773(95)00044-5
  2. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, Boyan BD. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A 2005;74:49-58.
  3. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23:844-54. https://doi.org/10.1016/j.dental.2006.06.025
  4. Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. J Biomed Mater Res 1998;40:1-11. https://doi.org/10.1002/(SICI)1097-4636(199804)40:1<1::AID-JBM1>3.0.CO;2-Q
  5. Wennerberg A, Hallgren C, Johansson C, Danelli S. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implants Res 1998;9:11-9. https://doi.org/10.1034/j.1600-0501.1998.090102.x
  6. Hussain MM, Gao W. How is the Surface Treatments Influence on the Roughness of Biocompatibility? Trends Biomater Artif Organs 2008;22:144-57.
  7. Celletti R, Marinho VC, Traini T, Orsini G, Bracchetti G, Perrotti V, Piattelli A. Bone contact around osseointegrated implants: a histologic study of acid-etched and machined surfaces. J Long Term Eff Med Implants 2006;16:131-43. https://doi.org/10.1615/JLongTermEffMedImplants.v16.i2.20
  8. Liu H, Webster TJ. Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 2007;28:354-69. https://doi.org/10.1016/j.biomaterials.2006.08.049
  9. Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 2008;29:970-83. https://doi.org/10.1016/j.biomaterials.2007.11.009
  10. Milinkovic I, Rudolf R, Raic KT, Aleksic Z, Lazic V, Todorovic A, Stamenkovic D. Aspects of titanium-implant surface modification at the micro and nano levels. Mater technol 2012;46:251-6.
  11. Smith LJ, Swaim JS, Yao C, Haberstroh KM, Nauman EA, Webster TJ. Increased osteoblast cell density on nanostructured PLGA-coated nanostructured titanium for orthopedic applications. Int J Nanomedicine 2007;2:493-9.
  12. Vandrovcova M, Jirka I, Novotna K, Lisa V, Frank O, Kolska Z, Stary V, Bacakova L. Interaction of human osteoblast-like Saos-2 and MG-63 cells with thermally oxidized surfaces of a titanium-niobium alloy. PLoS One 2014;9:e100475. https://doi.org/10.1371/journal.pone.0100475
  13. Ercan B, Webster TJ. The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces. Biomaterials 2010;31:3684-93. https://doi.org/10.1016/j.biomaterials.2010.01.078
  14. Vercaigne S, Wolke JG, Naert I, Jansen JA. A histological evaluation of $TiO_2$-gritblasted and Ca-P magnetron sputter coated implants placed into the trabecular bone of the goat: Part 2. Clin Oral Implants Res 2000;11:314-24. https://doi.org/10.1034/j.1600-0501.2000.011004314.x
  15. Hanawa T, Kamiura Y, Yamamoto S, Kohgo T, Amemiya A, Ukai H, Murakami K, Asaoka K. Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. J Biomed Mater Res 1997;36:131-6. https://doi.org/10.1002/(SICI)1097-4636(199707)36:1<131::AID-JBM16>3.0.CO;2-L
  16. Dalby MJ, Andar A, Nag A, Affrossman S, Tare R, McFarlane S, Oreffo RO. Genomic expression of mesenchymal stem cells to altered nanoscale topographies. J R Soc Interface 2008;5:1055-65. https://doi.org/10.1098/rsif.2008.0016
  17. Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: $TiO_2$ nanotube diameter directs cell fate. Nano Lett 2007;7:1686-91. https://doi.org/10.1021/nl070678d
  18. Sjostrom T, Dalby MJ, Hart A, Tare R, Oreffo RO, Su B. Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells. Acta Biomater 2009;5:1433-41. https://doi.org/10.1016/j.actbio.2009.01.007
  19. Variola F, Yi JH, Richert L, Wuest JD, Rosei F, Nanci A. Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation. Biomaterials 2008;29:1285-98. https://doi.org/10.1016/j.biomaterials.2007.11.040
  20. Nishimura I, Huang Y, Butz F, Ogawa T, Lin A, Jake Wang C. Discrete deposition of hydroxyapatite nanoparticles on a titanium implant with predisposing substrate microtopography accelerated osseointegration. Nanotechnol 2007;18:245101. https://doi.org/10.1088/0957-4484/18/24/245101
  21. Gutwein LG, Webster TJ. Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles. Biomaterials 2004;25:4175-83. https://doi.org/10.1016/j.biomaterials.2003.10.090
  22. Fasasia AY, Mwenifumbob S, Rahbarb N, Chenb J. Lid M, Beyeb AC, Arnoldb CB. Soboyejob WO. Nano-second UV laser processed micro-grooves on Ti6Al4V for biomedical applications. Mater Sci Eng C 2009;29:5-13. https://doi.org/10.1016/j.msec.2008.05.002
  23. Oh SH, Finones RR, Daraio C, Chen LH, Jin S. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 2005;26:4938-43. https://doi.org/10.1016/j.biomaterials.2005.01.048
  24. Park J, Bauer S, Schlegel KA, Neukam FW, von der Mark K, Schmuki P. $TiO_2$ nanotube surfaces: 15 nm-an optimal length scale of surface topography for cell adhesion and differentiation. Small 2009;5:666-71. https://doi.org/10.1002/smll.200801476
  25. Takeuchi M, Abe Y, Yoshida Y, Nakayama Y, Okazaki M, Akagawa Y. Acid pretreatment of titanium implants. Biomaterials 2003;24:1821-7. https://doi.org/10.1016/S0142-9612(02)00576-8
  26. Variola F, Lauria A, Nanci A, Rosei F. Influence of treatment conditions on the chemical oxidative activity of $H_2SO_4/H_2O_2$ mixtures for modulating the topography of titanium. Adv Eng Mater 2009;11:B227-34. https://doi.org/10.1002/adem.200900122
  27. Sugita Y, Ishizaki K, Iwasa F, Ueno T, Minamikawa H, Yamada M, Suzuki T, Ogawa T. Effects of pico-to-nanometer-thin $TiO_2$ coating on the biological properties of microroughened titanium. Biomaterials 2011;32:8374-84. https://doi.org/10.1016/j.biomaterials.2011.07.077
  28. Narayanan R, Kim SY, Kwon TY, Kim KH. Nanocrystalline hydroxyapatite coatings from ultrasonated electrolyte: preparation, characterization, and osteoblast responses. J Biomed Mater Res A 2008;87:1053-60.
  29. Yoshinari M, Oda Y, Kato T, Okuda K. Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials 2001;22:2043-8. https://doi.org/10.1016/S0142-9612(00)00392-6
  30. Cooper LF, Zhou Y, Takebe J, Guo J, Abron A, Holmen A, Ellingsen JE. Fluoride modification effects on osteoblast behavior and bone formation at $TiO_2$ grit-blasted c.p. titanium endosseous implants. Biomaterials 2006;27:926-36. https://doi.org/10.1016/j.biomaterials.2005.07.009
  31. Divya Rani VV, Manzoor K, Menon D, Selvamurugan N, Nair SV. The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response. Nanotechnology 2009;20:195101. https://doi.org/10.1088/0957-4484/20/19/195101
  32. Tavares MG, de Oliveira PT, Nanci A, Hawthorne AC, Rosa AL, Xavier SP. Treatment of a commercial, machined surface titanium implant with $H_2SO_4/H_2O_2$ enhances contact osteogenesis. Clin Oral Implants Res 2007;18:452-8. https://doi.org/10.1111/j.1600-0501.2007.01344.x
  33. Bajgai MP, Parajuli DC, Park SJ, Chu KH, Kang HS, Kim HY. In vitro bioactivity of sol-gel-derived hydroxyapatite particulate nanofiber modified titanium. J Mater Sci Mater Med 2010;21:685-94. https://doi.org/10.1007/s10856-009-3902-2
  34. Popescu S, Demetrescu I, Sarantopoulos C, Gleizes AN, Iordachescu D. The biocompatibility of titanium in a buffer solution: compared effects of a thin film of $TiO_2$ deposited by MOCVD and of collagen deposited from a gel. J Mater Sci Mater Med 2007;18:2075-83. https://doi.org/10.1007/s10856-007-3133-3
  35. Das T, Ghosh D, Bhattacharyya TK, Maiti TK. Biocompatibility of diamond-like nanocomposite thin films. J Mater Sci Mater Med 2007;18:493-500. https://doi.org/10.1007/s10856-007-2009-x
  36. De Groot K, Geesink R, Klein CP, Serekian P. Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res 1987;21:1375-81. https://doi.org/10.1002/jbm.820211203
  37. Jansen JA, Wolke JG, Swann S, Van der Waerden JP, de Groot K. Application of magnetron sputtering for producing ceramic coatings on implant materials. Clin Oral Implants Res 1993;4:28-34. https://doi.org/10.1034/j.1600-0501.1993.040104.x
  38. Wolke JG, van Dijk K, Schaeken HG, de Groot K, Jansen JA. Study of the surface characteristics of magnetron-sputter calcium phosphate coatings. J Biomed Mater Res 1994;28:1477-84. https://doi.org/10.1002/jbm.820281213
  39. Rautray TR, Narayanan R, Kim KH. Ion implantation of titanium based biomaterials. Prog Mater Sci 2011;56:1137-77. https://doi.org/10.1016/j.pmatsci.2011.03.002
  40. Thomsson M, Esposito M. A retrospective case series evaluating Branemark BioHelix implants placed in a specialist private practice following 'conventional' procedures. One-year results after placement. Eur J Oral Implantol 2008;1:229-34.
  41. Bagno A, Di Bello C. Surface treatments and roughness properties of Ti-based biomaterials. J Mater Sci Mater Med 2004;15:935-49. https://doi.org/10.1023/B:JMSM.0000042679.28493.7f
  42. Yao C, Slamovich EB, Webster TJ. Enhanced osteoblast functions on anodized titanium with nanotube-like structures. J Biomed Mater Res A 2008;85:157-66.
  43. Ballo AM, Omar O, Xia W, Palmquist A. Dental implant surfaces - Physicochemical properties, biological performance and trends. www.intechopen.com:19-56. [Cited 2011 Aug 29]. Available from: http://www.intechopen.com/books/implant-dentistry-a-rapidly-evolving-practice/dental-implant-surfaces-physicochemical-properties-biological-performance-and-trends
  44. Rautray TR, Narayanan R, Kwon TY, Kim KH. Surface modification of titanium and titanium alloys by ion implantation. J Biomed Mater Res B Appl Biomater 2010;93:581-91.
  45. Izman S, Kadir MRA, Anwar M, Nazim EM, Rosliza R, Shah A, Hassan MA. Surface modification techniques for biomedical grade of titanium alloys: oxidation, carburization and ion implantation processes, titanium alloys - yowards achieving enhanced properties for diversified applications, Dr. A.K.M. Nurul Amin (Ed.), ISBN: 978-953-51-0354-7, InTech, DOI:10.5772/36318. [cited 2012] Available from: http://www.intechopen.com/books/titanium-alloys-towards-achieving-enhanced-properties-for-diversified-applications/surface-modification-techniques-for-biomedical-grade-of-titanium-alloys-oxidation-carburization-and-ion-implantation-processes.
  46. Miyauchi T, Yamada M, Yamamoto A, Iwasa F, Suzawa T, Kamijo R, Baba K, Ogawa T. The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale $TiO_2$ layers on biomaterials surfaces. Biomaterials 2010;31:3827-39. https://doi.org/10.1016/j.biomaterials.2010.01.133
  47. Tsukimura N, Yamada M, Iwasa F, Minamikawa H, Att W, Ueno T, Saruwatari L, Aita H, Chiou WA, Ogawa T. Synergistic effects of UV photofunctionalization and micro-nano hybrid topography on the biological properties of titanium. Biomaterials 2011;32:4358-68. https://doi.org/10.1016/j.biomaterials.2011.03.001

피인용 문헌

  1. Electrochemical Cathodic Polarization, a Simplified Method That Can Modified and Increase the Biological Activity of Titanium Surfaces: A Systematic Review vol.11, pp.7, 2016, https://doi.org/10.1371/journal.pone.0155231
  2. Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry vol.2017, pp.1942-0994, 2017, https://doi.org/10.1155/2017/7542540
  3. Effect of Growth Hormone Supplementation on Osseointegration vol.26, pp.4, 2017, https://doi.org/10.1097/ID.0000000000000616
  4. In vitro biological outcome of laser application for modification or processing of titanium dental implants vol.32, pp.5, 2017, https://doi.org/10.1007/s10103-017-2217-7
  5. Imidazolium-based titanium substrates against bacterial colonization vol.5, pp.3, 2017, https://doi.org/10.1039/C6BM00715E
  6. Nanomaterials in dentistry: a cornerstone or a black box? vol.13, pp.6, 2018, https://doi.org/10.2217/nnm-2017-0329
  7. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance vol.6, pp.6, 2018, https://doi.org/10.1039/C8BM00021B
  8. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration vol.144, pp.None, 2014, https://doi.org/10.1016/j.colsurfb.2016.04.020
  9. The Determinants of Morphology and Properties of the Nanohydroxyapatite Coating Deposited on the Ti13Zr13Nb Alloy by Electrophoretic Technique vol.16, pp.3, 2014, https://doi.org/10.1515/adms-2016-0017
  10. Nanoscale Surface Modifications of Medical Implants for Cartilage Tissue Repair and Regeneration vol.10, pp.None, 2014, https://doi.org/10.2174/1874325001610010824
  11. Side Effects of Dental Metal Implants: Impact on Human Health (Metal as a Risk Factor of Implantologic Treatment) vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/2519205
  12. Platelet Adhesion on Commercially Pure Titanium Plates in Vitro II. Immunofluorescence Visualization of PDGF-B, TGFβ1, and PPARγ Released from Activated Adherent Platelets vol.7, pp.4, 2014, https://doi.org/10.3390/dj7040109
  13. Estimation of contrast-to-noise ratio in CT and CBCT images with varying scan settings in presence of different implant materials vol.48, pp.8, 2014, https://doi.org/10.1259/dmfr.20190139
  14. Effect of Mechanobiology of Cell Response on Titanium with Multilayered Aluminum Nitride/Tantalum Thin Film vol.10, pp.2, 2020, https://doi.org/10.3390/app10020645
  15. Osteoimmunomodulatory Effects of Enamel Matrix Derivate and Strontium Coating Layers: A Short- and Long-Term In Vivo Study vol.3, pp.8, 2014, https://doi.org/10.1021/acsabm.0c00608
  16. A Brief Review on the Evolution of Metallic Dental Implants: History, Design, and Application vol.8, pp.None, 2021, https://doi.org/10.3389/fmats.2021.646383
  17. The Potential of a Surface-Modified Titanium Implant with Tetrapeptide for Osseointegration Enhancement vol.11, pp.6, 2021, https://doi.org/10.3390/app11062616
  18. The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation vol.10, pp.8, 2014, https://doi.org/10.3390/jcm10081641
  19. One-Step Synthesis of Versatile Antimicrobial Nano-Architected Implant Coatings for Hard and Soft Tissue Healing vol.13, pp.28, 2014, https://doi.org/10.1021/acsami.1c10121
  20. Evaluation of Ti/Al alloy coated with biogenic hydroxyapatite as an implant device in dogs’ femur bones vol.32, pp.9, 2014, https://doi.org/10.1007/s10856-021-06589-5
  21. Influence of Bioinspired Lithium-Doped Titanium Implants on Gingival Fibroblast Bioactivity and Biofilm Adhesion vol.11, pp.11, 2014, https://doi.org/10.3390/nano11112799