DOI QR코드

DOI QR Code

Characterization of denaturation and renaturation of DNA for DNA hybridization

  • Wang, Xiaofang (Department of Civil Engineering, Auburn University) ;
  • Lim, Hyun Jeong (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Son, Ahjeong (Department of Environmental Science and Engineering, Ewha Womans University)
  • Received : 2014.06.12
  • Accepted : 2014.08.08
  • Published : 2014.01.01

Abstract

Objectives The present study was designed to systematically characterize the denaturation and the renaturation of double stranded DNA (dsDNA), which is suitable for DNA hybridization. Methods A series of physical and chemical denaturation methods were implemented on well-defined 86-bp dsDNA fragment. The degree of each denaturation was measured and the most suitable denaturation method was determined. DNA renaturation tendency was also investigated for the suggested denaturation method. Results Heating, beads mill, and sonication bath did not show any denaturation for 30 minutes. However probe sonication fully denatured DNA in 5 minutes. 1 mol/L sodium hydroxide (alkaline treatment) and 60% dimethyl sulfoxide (DMSO) treatment fully denatured DNA in 2-5 minutes. Conclusions Among all the physical methods applied, the direct probe sonication was the most effective way to denature the DNA fragments. Among chemical methods, 60% DMSO was the most adequate denaturation method since it does not cause full renaturation during DNA hybridization.

Keywords

References

  1. Li S, Liu H, Liu L, Tian L, He N. A novel automated assay with dual-color hybridization for single-nucleotide polymorphisms genotyping on gold magnetic nanoparticle array. Anal Biochem 2010; 405(1):141-143. https://doi.org/10.1016/j.ab.2010.05.016
  2. Sturtevant JM, Geiduschek EP. The heat of denaturation of DNA. J Am Chem Soc 1958;80(11):2911.
  3. Ando T. A nuclease specific for heat-denatured DNA in isolated from a product of Aspergillus oryzae. Biochim Biophys Acta 1966; 114(1):158-168. https://doi.org/10.1016/0005-2787(66)90263-2
  4. Markarian SA, Asatryan AM, Grigoryan KR, Sargsyan HR. Effect of diethylsulfoxide on the thermal denaturation of DNA. Biopolymers 2006;82(1):1-5. https://doi.org/10.1002/bip.20454
  5. Yu ZW, Quinn PJ. Dimethyl sulphoxide: a review of its applications in cell biology. Biosci Rep 1994;14(6):259-281. https://doi.org/10.1007/BF01199051
  6. Esteban J, Alonso-Rodriguez N, del-Prado G, Ortiz-Perez A, Molina-Manso D, Cordero-Ampuero J, et al. PCR-hybridization after sonication improves diagnosis of implant-related infection. Acta Orthop 2012;83(3):299-304. https://doi.org/10.3109/17453674.2012.693019
  7. Brautigam AR, Richman DD, Oxman MN. Rapid typing of herpes simplex virus isolates by deoxyribonucleic acid: deoxyribonucleic acid hybridization. J Clin Microbiol 1980;12(2):226-234.
  8. Elizaquivel P, Sánchez G, Aznar R. Quantitative detection of viable foodborne E. coli O157:H7, Listeria monocytogenes and Salmonella in fresh-cut vegetables combining propidium monoazide and real-time PCR. Food Control 2012;25(2):704-708. https://doi.org/10.1016/j.foodcont.2011.12.003
  9. Guan J, Levin RE. Quantitative detection of Escherichia coli 0157:H7 in ground beef by immunomagnetic separation and competitive polymerase chain reaction. Food Biotechnol 2002;16(3): 155-166. https://doi.org/10.1081/FBT-120016665
  10. Ibekwe AM, Grieve CM. Detection and quantification of Escherichia coli O157:H7 in environmental samples by real-time PCR. J Appl Microbiol 2003;94(3):421-431. https://doi.org/10.1046/j.1365-2672.2003.01848.x
  11. Ibekwe AM, Watt PM, Grieve CM, Sharma VK, Lyons SR. Multiplex fluorogenic real-time PCR for detection and quantification of Escherichia coli O157:H7 in dairy wastewater wetlands. Appl Environ Microbiol 2002;68(10):4853-4862. https://doi.org/10.1128/AEM.68.10.4853-4862.2002
  12. Weeratna RD, Doyle MP. Detection and production of verotoxin 1 of Escherichia coli O157:H7 in food. Appl Environ Microbiol 1991; 57(10):2951-2955.
  13. Volkov SN. Some aspects of the DNA hypochromic effect theory. Int J Quantum Chem 1979;16(1):119-132. https://doi.org/10.1002/qua.560160115
  14. Wang X, Son A. Effects of pretreatment on the denaturation and fragmentation of genomic DNA for DNA hybridization. Environ Sci Process Impacts 2013;15(12):2204-2212. https://doi.org/10.1039/c3em00457k
  15. Wallace RB, Shaffer J, Murphy RF, Bonner J, Hirose T, Itakura K. Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch. Nucleic Acids Res 1979;6(11):3543-3557. https://doi.org/10.1093/nar/6.11.3543
  16. Geiduschek EP. On the factors controlling the reversibility of DNA denaturation. J Mol Biol 1962;4:467-487. https://doi.org/10.1016/S0022-2836(62)80103-X
  17. Kuske CR, Banton KL, Adorada DL, Stark PC, Hill KK, Jackson PJ. Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl Environ Microbiol 1998;64(7):2463-2472.
  18. Volossiouk T, Robb EJ, Nazar RN. Direct DNA extraction for PCRmediated assays of soil organisms. Appl Environ Microbiol 1995; 61(11):3972-3976.
  19. Kim BH, Ramanan R, Cho DH, Choi GG, La HJ, Ahn CY, et al. Simple, rapid and cost-effective method for high quality nucleic acids extraction from different strains of Botryococcus braunii. PLoS One 2012;7(5):e37770. https://doi.org/10.1371/journal.pone.0037770
  20. Leite GM, Magan N, Medina A. Comparison of different beadbeating RNA extraction strategies: an optimized method for filamentous fungi. J Microbiol Methods 2012;88(3):413-418. https://doi.org/10.1016/j.mimet.2012.01.011
  21. Rimmer AE, Becker JA, Tweedie A, Whittington RJ. Validation of high throughput methods for tissue disruption and nucleic acid extraction for ranaviruses (family Iridoviridae). Aquaculture 2012; 338-341:23-28. https://doi.org/10.1016/j.aquaculture.2012.01.012
  22. Schiestl RH, Gietz RD. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 1989;16(5-6):339-346. https://doi.org/10.1007/BF00340712
  23. Honjo T, Kataoka T. Organization of immunoglobulin heavy chain genes and allelic deletion model. Proc Natl Acad Sci U S A 1978; 75(5):2140-2144. https://doi.org/10.1073/pnas.75.5.2140
  24. Davis AW, Phillips DR. A defined molecular-weight distribution of deoxyribonucleic acid after extensive sonication. Biochem J 1978; 173(1):179-183.
  25. Ageno M, Dore E, Frontali C. Alkaline denaturation of DNA. Biophys J 1969;9:1281-1311. https://doi.org/10.1016/S0006-3495(69)86452-0
  26. Ehrlich P, Doty P. The alkaline denaturation of deoxyribose nucleic acid. J Am Chem Soc 1958;80:4251-4255. https://doi.org/10.1021/ja01549a033
  27. Shin S, Day LA. Separation and size determination of circular and linear single-stranded DNAs by alkaline agarose gel electrophoresis. Anal Biochem 1995;226(2):202-206. https://doi.org/10.1006/abio.1995.1214
  28. Chen SH, Chuang YC, Lu YC, Lin HC, Yang YL, Lin CS. A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus. Nanotechnology 2009;20(21):215501. https://doi.org/10.1088/0957-4484/20/21/215501
  29. Poltronieri P, D'Urso OF, Blaiotta G, Morea M. DNA arrays and membrane hybridization methods for screening of six Lactobacillus species common in food products. Food Anal Method 2008; 1:171-180. https://doi.org/10.1007/s12161-008-9015-6
  30. Blake RD, Delcourt SG. Thermodynamic effects of formamide on DNA stability. Nucleic Acids Res 1996;24(11):2095-2103. https://doi.org/10.1093/nar/24.11.2095
  31. McConaughy BL, Laird CD, McCarthy BJ. Nucleic acid reassociation in formamide. Biochemistry 1969;8(8):3289-3295. https://doi.org/10.1021/bi00836a024
  32. Hutton JR. Renaturation kinetics and thermal stability of DNA in aqueous solutions of formamide and urea. Nucleic Acids Res 1977; 4(10):3537-3555. https://doi.org/10.1093/nar/4.10.3537

Cited by

  1. Immuno Affinity SELEX for Simple, Rapid, and Cost-Effective Aptamer Enrichment and Identification against Aflatoxin B1 vol.7, pp.None, 2016, https://doi.org/10.3389/fmicb.2016.01909
  2. DNA Clutch Probes for Circulating Tumor DNA Analysis vol.138, pp.34, 2014, https://doi.org/10.1021/jacs.6b05679
  3. Exosome-Mediated Telomere Instability in Human Breast Epithelial Cancer Cells after X Irradiation vol.187, pp.1, 2017, https://doi.org/10.1667/rr14201.1
  4. Detection and Quantification of Toxin-Producing Microcystis aeruginosa Strain in Water by NanoGene Assay vol.27, pp.4, 2017, https://doi.org/10.4014/jmb.1611.11028
  5. Denaturation of DNA in Ternary Mixed Solution of Water/Hydrophilic/Hydrophobic Organic Solvent vol.7, pp.2, 2014, https://doi.org/10.4236/jasmi.2017.72004
  6. An Efficient Bead-captured Denaturation Method for Preparing Long Single-stranded DNA : Single-stranded DNA Preparation, Bead Capture vol.64, pp.9, 2014, https://doi.org/10.1002/jccs.201700142
  7. Thermal Shift as an Entropy-Driven Effect vol.56, pp.47, 2017, https://doi.org/10.1021/acs.biochem.7b00860
  8. Sensitive Leptospira DNA detection using tapered optical fiber sensor vol.11, pp.8, 2018, https://doi.org/10.1002/jbio.201700363
  9. Harnessing the Noncovalent Interactions of DNA Backbone with 2D Silicate Nanodisks To Fabricate Injectable Therapeutic Hydrogels vol.12, pp.10, 2018, https://doi.org/10.1021/acsnano.8b02434
  10. Development of a FRET-based fluorescence aptasensor for the detection of aflatoxin B1 in contaminated food grain samples vol.8, pp.19, 2014, https://doi.org/10.1039/c8ra00317c
  11. Super-resolution binding activated localization microscopy through reversible change of DNA conformation vol.9, pp.1, 2018, https://doi.org/10.1080/19491034.2017.1419846
  12. Irreversible denaturation of DNA: a method to precisely control the optical and thermo-optic properties of DNA thin solid films vol.6, pp.9, 2014, https://doi.org/10.1364/prj.6.000918
  13. ctDNA Detection Based on DNA Clutch Probes and Strand Exchange Mechanism vol.6, pp.None, 2018, https://doi.org/10.3389/fchem.2018.00530
  14. The Effect of Single Mismatches on Primer Extension vol.64, pp.5, 2018, https://doi.org/10.1373/clinchem.2017.282285
  15. Neutrophil extracellular traps possess anti-human respiratory syncytial virus activity: Possible interaction with the viral F protein vol.251, pp.None, 2014, https://doi.org/10.1016/j.virusres.2018.04.001
  16. The Role of Chemically Modified DNA in Discrimination of Single-Point Mutation through Plasmon-Based Colorimetric Assays vol.1, pp.7, 2014, https://doi.org/10.1021/acsanm.8b00984
  17. Inductively actuated micro needles for on-demand intracellular delivery vol.8, pp.None, 2014, https://doi.org/10.1038/s41598-018-28194-3
  18. Low dose dimethyl sulfoxide driven gross molecular changes have the potential to interfere with various cellular processes vol.8, pp.None, 2014, https://doi.org/10.1038/s41598-018-33234-z
  19. Non-intertwined strands of plasmid DNA contradicts the Watson and Crick model of DNA structure vol.8, pp.None, 2019, https://doi.org/10.12688/f1000research.18134.1
  20. Mechanisms of DNA hybridization: Transition path analysis of a simulation-informed Markov model vol.150, pp.10, 2014, https://doi.org/10.1063/1.5054593
  21. Recovery of Natural Products from Deep Eutectic Solvents by Mimicking Denaturation vol.7, pp.11, 2014, https://doi.org/10.1021/acssuschemeng.9b01012
  22. Utilization of a Multiple Cloning Site as a Versatile Platform for DNA Triblock Copolymer Synthesis vol.30, pp.10, 2014, https://doi.org/10.1021/acs.bioconjchem.9b00503
  23. Recent Advances in Chain Conformation and Bioactivities of Triple-Helix Polysaccharides vol.21, pp.5, 2020, https://doi.org/10.1021/acs.biomac.9b01644
  24. Antimicrobial activity and DNA/HSA interaction of fluorinated 3,6,9-trisubstituted acridines vol.74, pp.7, 2014, https://doi.org/10.1007/s11696-020-01079-4
  25. Reverse transcriptase kinetics for one-step RT-PCR vol.601, pp.None, 2014, https://doi.org/10.1016/j.ab.2020.113768
  26. Stabilization and delivery of bioavailable nanosized iron by fish sperm DNA vol.11, pp.7, 2014, https://doi.org/10.1039/d0fo00703j
  27. Effect of DNA Origami Nanostructures on hIAPP Aggregation vol.10, pp.11, 2014, https://doi.org/10.3390/nano10112200
  28. Optical and theoretical study of strand recognition by nucleic acid probes vol.3, pp.1, 2014, https://doi.org/10.1038/s42004-020-00362-5
  29. Detection of Viral −RNA and +RNA Strands in Enterovirus-Infected Cells and Tissues vol.8, pp.12, 2014, https://doi.org/10.3390/microorganisms8121928
  30. Luminescent ruthenium(II)-para-cymene complexes of aryl substituted imidazo-1,10-phenanthroline as anticancer agents and the effect of remote substituents on cytotoxic activities vol.515, pp.None, 2014, https://doi.org/10.1016/j.ica.2020.120066
  31. A polyA DNA probe-based ultra-sensitive and structure-distinguishable electrochemical biosensor for the analysis of RNAi transgenic maize vol.146, pp.11, 2014, https://doi.org/10.1039/d1an00313e
  32. Selected In Situ Hybridization Methods: Principles and Application vol.26, pp.13, 2014, https://doi.org/10.3390/molecules26133874
  33. A PCR-Free Genome Detection of Mycobacterium Tuberculosis Complex in Clinical Samples using MWCNT/PPy/KHApNps Modified Electrochemical Nano-Biosensor vol.168, pp.7, 2014, https://doi.org/10.1149/1945-7111/ac0b29
  34. An injectable and biodegradable nano-photothermal DNA hydrogel enhances penetration and efficacy of tumor therapy vol.9, pp.14, 2014, https://doi.org/10.1039/d1bm00568e
  35. Reversible regulation of metallo-base-pair interactions for DNA dehybridization by ultrasound vol.57, pp.60, 2014, https://doi.org/10.1039/d1cc02402g
  36. Cholinergic drugs bind at the minor groove and reverse induced oxidative stress of calf thymus DNA: a new perspective towards an unexplored therapeutic efficacy vol.45, pp.31, 2014, https://doi.org/10.1039/d1nj01911b
  37. Targeted delivery of doxorubicin through CD44 aptamer to cancer cells vol.12, pp.10, 2014, https://doi.org/10.4155/tde-2021-0038
  38. Molecular adaptations to heat stress in the thermophilic ant genus Cataglyphis vol.30, pp.21, 2014, https://doi.org/10.1111/mec.16134
  39. The spatial RNA integrity number assay for in situ evaluation of transcriptome quality vol.4, pp.1, 2014, https://doi.org/10.1038/s42003-020-01573-1
  40. Assessing the Impact of Heat Treatment of Food on Antimicrobial Resistance Genes and Their Potential Uptake by Other Bacteria-A Critical Review vol.10, pp.12, 2021, https://doi.org/10.3390/antibiotics10121440
  41. A Cu(I) complex groove binder with a high affinity towards DNA denaturation vol.345, pp.None, 2014, https://doi.org/10.1016/j.molliq.2021.117904
  42. Convert mechanical energy to chemical energy to effectively remove organic pollutants by using PTO catalyst vol.283, pp.None, 2014, https://doi.org/10.1016/j.seppur.2021.120235