DOI QR코드

DOI QR Code

Floral Bud Cold Hardiness and Cultural Safety Zone in Rabbiteye Blueberry Cultivars

래빗아이 블루베리 품종별 꽃눈의 내동성과 재배안전지역

  • 김홍림 (농촌진흥청 국립원예특작과학원 남해출장소) ;
  • 곽용범 (농촌진흥청 국립원예특작과학원 남해출장소) ;
  • 한점화 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 오필경 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 채원병 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 김성철 (농촌진흥청 국립원예특작과학원 남해출장소) ;
  • 김목종 (농촌진흥청 국립원예특작과학원 남해출장소) ;
  • 김진국 (국립경상대학교 원예학과)
  • Received : 2014.09.18
  • Accepted : 2014.11.12
  • Published : 2014.12.31

Abstract

BACKGROUND: Rabbiteye blueberry(Vaccinium ashei) is one of the most widely grown blueberry types in the world, together with Northern and Southern highbush blueberry(Vaccinium corymbosum). Rabbiteye blueberry have higher soil adaptability and fruit productivity but less cold tolerance to low temperature than highbush blueberry. The objective of this study is to investigate freezing tolerance of floral buds and establish a cultivation zone for rabbiteye blueberry cultivars. METHODS AND RESULTS: Bearing branches which have similar thickness and same number of floral buds were collected in the early January at the blueberry germplasm preservation plot located in Namhae Sub-station, National Institute of Horticultural and Herbal Science in Gyeongsangnamdo. Cold response of bearing branches were investigated by electrolyte leakage and freezing tolerance of floral buds were determined by ovary browning ratio of 50%($LT_{50}$). Cultivation zone was established based on mean annual extreme minimum temperature for 30 years, from 1981 to 2010. The electrolyte leakage of bearing branches in rabbiteye blueberry increased as temperature decreased and was lowest in 'Brightwell' but highest in 'Bluegem' when they were kept in $-5^{\circ}C$. Besides, the electrolyte leakage increased in 'Brightblue', 'Brightwell', 'Climax', 'Delite', 'Gardenblue', 'Southland' and 'Woodard' in $-20^{\circ}C$. Freezing tolerance($LT_{50}$) was lowest in 'Bluegem' and 'Homebell'($-13.3^{\circ}C$), and highest in 'Tifblue'($-25^{\circ}C$) among different rabbiteye blueberry cultivars. $LT_{50}$ of 'Southland' was from -15.0 to $-16.7^{\circ}C$, that of 'Delite', 'Brightwell',' Austin' and 'Climax' was $-18.3^{\circ}C$, and that of 'Bluebelle', 'Woodard' and 'Powderblue' was $-20^{\circ}C$. CONCLUSION: This study indicate that The hardiness zones of rabbiteye blueberry were classified into Six cultivation zones and cultivation zones of most cultivars were the south of Jeollanam-do and Gyeongdangnam-do, except for 'Tifblue.'

래빗아이블루베리는 북부형과 남부형 하이부쉬 블루베리와 함께 전 세계적으로 가장 많이 재배되고 있는 블루베리의 한 품종군이다. 하이부쉬 블루베리에 비해 높은 토양적응성과 다수성의 장점을 가지고 있지만, 저온 저항성이 상대적으로 낮다는 단점 역시 가지고 있다. 본 연구의 목적은 래빗아이 블루베리의 품종별 꽃눈의 내동성 범위를 구명하고 그에 따른 재배안정지대를 설정하는데 두었다. 본 연구에 사용된 실험재료는 경남 남해에 소재한 국립원예특작 과학원 남해출장소 블루베리 유전자원 포장에서 1월 상순에 굵기와 꽃눈의 개수 등이 균일하도록 채취하였다. 결과지의 저온반응은 전해질 누출량을 통하여 조사하였으며, 꽃눈의 내동성은 절개한 후 씨방의 갈변율이 50%에 도달한 온도($LT_{50}$)를 경계로 구분하였다. 각 품종의 내동성을 바탕으로 재배안전지대설정은 1981~2010년까지 30년간의 극최저 기온 자료를 바탕으로 설정하였다. 래빗아이 블루베리 품종별 가지의 전해질 누출량은 온도가 낮을수록 증가하는 경향이었으며, $-5^{\circ}C$조건에서의 전해질 누출량은 'Brightwell'이 가장 낮았고, 'Bluegem'이 가장 많았다. 한편 'Brightblue', 'Brightwell', 'Climax', 'Delite', 'Gardenblue', 'Southland' 그리고 'Woodard' 품종들은 $-20^{\circ}C$ 처리에서 전해질 누출량이 증가하였다. 래빗아이 블루베리 품종별 꽃눈의 내동성($LT_{50}$)은 'Bluegem' 과 'Homebell' ($-13.3^{\circ}C$)이 가장 낮았고, 'Tifblue'($-25^{\circ}C$)가 가장 높았다. 'Bonita', Gardenblue', 'Brightblue' 그리고 'Southland는 $-15.0{\sim}-16.7^{\circ}C$ 범위 내에서 내동성을 나타냈으며, 'Delite', 'Brightwell', 'Austin' 그리고 'Climax'는 $-18.3^{\circ}C$에서, 'Bluebelle', 'Woodard' 그리고 'Powderblue'는 $-20^{\circ}C$범위 내에서 내동성을 나타냈다. 본 연구는 래빗아이 블루베리 내한성 영역을 6개 구역으로 분류하였으며, 'Tifblue'를 제외한 대부분 품종들의 재배안전 지대는 전남 및 경남지역과 그 이남지역 이었다. 한편 본 연구의 실험실조건의 결과물이기 때문에 재배현장(노지 및 시설)에서는 다양한 요인에 의해 달라질 수 있다. 따라서 보다 정밀한 안전지대 설정을 위하여 추가적인 연구가 필요하다 사료된다.

Keywords

References

  1. Akyildiz, A., Aksay, S., Benli, H., Kıroglu, F., Fenercioglu, H., 2004. Determination of changes in some characteristics of persimmon during dehydration at different temperatures, Journal of food engineering 65, 95-99. https://doi.org/10.1016/j.jfoodeng.2004.01.001
  2. Arora, R., Rowland, L.J., 2011. Physiological research on winter-hardiness: deacclimation resistance, reacclimation ability, photoprotection strategies, and a cold acclimation protocol design, HortScience 46, 1070-1078.
  3. Arora, R., Rowland, L.J., Lehman, J.S., Lim, C.C., Panta, G.R., Vorsa. N., 2000. Genetic analysis of freezing tolerance in blueberry(Vaccinium section Cyanococcus), Theor. Appl. Genet. 100, 690-696. https://doi.org/10.1007/s001220051341
  4. Arora, R., Rowland, L.J., Ogden, E.L., Dhanaraj, A.L., Marian,C.O., Ehlenfeldt, M.K., Vinyard, B., 2004. Dehardening kinetics, bud development, and dehydrin metabolism in blueberry(Vaccinium spp.) cultivars during deacclimation at constant, warm temperatures, J. Am. Soc. Hort. Sci. 129, 667-674.
  5. Cline, B., Fernandez, G., Sites, F.P., 1998. Blueberry freeze damage and protection measures, NC STATE UNIVERSITY Horticuhu-rae Information Leaflets 11, 98.
  6. Daly, C., Widrlechner, M.P., Halbleib, M.D., Smith, J.I., Gibson, W.P., 2012. Development of a New USDA Plant Hardiness Zone Map for the United States, J. Appl. Meteor. Climatol. 51, 242-264. https://doi.org/10.1175/2010JAMC2536.1
  7. Ehlenfeldt, M.K., Rowland, L.J., Ogden, E.L., Vinyard, B. T., 2006. Evaluation of midwinter cold hardiness among 25 rabbiteye blueberry cultivars, HortScience 41, 579-581.
  8. Ehlenfeldt, M.K., Rowland, L.J., Ogden, E.L., Vinyard, B.T., 2007. Floral bud cold hardiness of Vaccinium ashei, V. constablaei, and hybrid derivatives and the potential for producing northern-adapted rabbiteye cultivars, HortScience 42, 1131-1134.
  9. Ercoil, L., Mariotti, M., Masoni, A., Arduini, I., 2004. Growth responses of sorghum plants to chilling temperature and duration of exposure, Eur. J. Agron. 21, 93-103. https://doi.org/10.1016/S1161-0301(03)00093-5
  10. Flinn, C.L., Ashworth, E.N., 1994. Blueberry flower-bud hardiness is not estimated by differential thermal analysis, J. Am. Soc. Hort. Sci. 119, 295-298.
  11. Gough, R.E., 1994. The highbush blueberry and its management, Food Products Press, New York, USA, pp. 67-78.
  12. Hanson, E.J., Hancock, J.F., 1990. Highbush blueberry cultivars and production trends, Fruit Varieties Journal 44, 77-81.
  13. Hancock, J.F., Lyrene, P., Finn, C.A., Vorsa, N., Lobos, G.A., 2008. Blueberry and cranberry, in: Hancock, J.F. (Eds), Temperate Fruit Breeding: Germplasm to Genomics, Kluwer Publishers, Dordrecht, The Netherlands, pp. 115-150.
  14. Johnson, C.E., Himelrick, D.G., 2013. Louisiana Home Fruit and Nut Production, LSU AgCent, USA, pp. 28-29.
  15. Kim, J.H., Kim, J.C., Ko, K.C., Kim, K.R., Lee, J.C., 2006. General Pomology, fourth ed. in: Kim, J.H. (Eds), Geographical Conditions of Fruit Growing, Pruning, Flower Bud Formation and Fruition Management, Hyangmoonsha, Korean, pp. 35-38, 40-44, 147-148, 177-178.
  16. Levitt, J., 1980. Responses of plants to environmental stresses, second ed. pp. 79-98, 116-115, Chilling, freezing, and high temperature stresses, Academic Press, USA.
  17. Lim, C.C., Arora, R., Townsend, E.C., 1998. Comparing Gompertz and Richards functions to estimate freezing injury in Rhododendron using electrolyte leakage, J. Am. Soc. Hort. Sci. 123, 246-252.
  18. Matsuo, T., Ide, S., shitida., M., 1992. Correlation between chilling sensitivity of plant tissue and fatty acid composition of phosphatidylglycerols, Phytochemistry 31, 2289-2293. https://doi.org/10.1016/0031-9422(92)83266-2
  19. Moore, J.N., 1994. The blueberry industry of North America, HortTechnology 4, 96-102.
  20. Murray, M.B., Cape, J.N., Fowler, D., 1989. Quantification of frost damage in plant tissues by rates of electrolyte leakage. New phytologist 113, 307-311. https://doi.org/10.1111/j.1469-8137.1989.tb02408.x
  21. Muthalif, M.M., Rowland, L.J., 1994. Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry(Vaccinium, section Cyanococcus), Plant Physiology 104, 1439-1447. https://doi.org/10.1104/pp.104.4.1439
  22. Proebsting, E.L., Mills, M.N., 1978. Low temperature resistance of developing flower buds of six deciduous fruit species, J. Am. Soc. Hort. Sci. 103, 192-198.
  23. Retamales, J.B., Hancock, J.F., 2012. Blueberries, pp. 51-67, CABI. USA.
  24. Rowland, L.J., Ogden, E.L., Ehlenfeldt, M.K., Vinyard, B., 2005. Cold hardiness, deacclimation kinetics, and bud development among 12 diverse blueberry genotypes under field conditions, J. Am. Soc. Hort. Sci. 130, 508-514.
  25. Sakai, A., Larcher, W., 1987. Frost survival of plants, Ecological Studies, pp. 39-54, Springer Verlag, Germany.
  26. Song, G.C., Choi, I.M., Cho, M.D., 2000. Cold hardiness in relation to vine management in 'Cambell Early' Grapevines, Kor. J. Hort. Sci. Technol. 1893, 387-390.
  27. Spiers, J.M., Braswell, J.H., Hegwood, C.P., 1985. Establishment and maintenance of rabbiteye blueberry, Miss. Agr. & For. Expt. Sta. Bul. 941.
  28. Steponkus, P.L., 1984. Role of the plasma membrane in freezing injury and cold acclimation, Ann. Rev. Plant Physiol. 35, 543-584. https://doi.org/10.1146/annurev.pp.35.060184.002551
  29. Sutinen, M.L., Palta, J.P., Reich, P.B., 1992. Seasonal differences in freezing stress resistance of needles of Pinus nigra and Pinus resinosa: evaluation of the electrolyte leakage method, Tree Physiol. 11, 241-254. https://doi.org/10.1093/treephys/11.3.241
  30. Thomas, F.M., Ahlers, U., 1999. Effects of excess nitrogen on frost hardiness and freezing injury of above-ground tissue in young oaks(Quercus petraea and Q. robur), New phytologist 144, 73-83. https://doi.org/10.1046/j.1469-8137.1999.00501.x
  31. VainoUP, A., McNamara, S., Pellett, H., 1997. Stem and Flower Bud Hardiness of Deciduous Azaleas, Environ. Hort. 15, 45-50.
  32. Widrlechner, M.P., Daly, C., Keller, M., Kaplan, K., 2012. Horticultural applications of a newly revised USDA Plant Hardiness zone Map, HortTechnology 22, 6-19.
  33. Wolpert, J.A., Howell. G.S., 1984. Effects of cane length and dormant season pruning date on cold hardiness and water content of Concord bud and cane tissues, Am. J. Enol. Vitic. 35, 237-241.