References
- Ahn, H. J. (2008), A new similarity measure for collaborative filtering to alleviate the new user cold-starting problems, Information Sciences, 178(1), 37-51. https://doi.org/10.1016/j.ins.2007.07.024
- Breese, J. S., Heckerman, D., and Kadie, C. (1998), Empirical analysis of predictive algorithms for collaborative filtering, Technical Report MSR-TR-98-12, Microsoft Research, Redmond, WA.
- Breiman, L. (2001), Random forests, Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
- Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1999), Classification and Regression Trees, CRC Press, New York, NY.
- Friedman, J., Hastie, T., and Tibshirani, R. (2009), Regularization paths for generalized linear models via coordinate descent, Department of Statistics, Stanford University, Stanford, CA.
- Goldberg, D., Nichols, D., Oki, B., and Terry, D. (1992), Using collaborative filtering to weave an information tapestry, Communications of the ACM, 35(12), 61-70.
- Goldberg, K., Roeder, T., Gupta, D., and Perkins, C. (2001), Eigentaste: a constant time collaborative filtering algorithm, Information Retrieval Journal, 4(2), 133-151. https://doi.org/10.1023/A:1011419012209
- Hahsler, M. (2014), recommenderlab: a framework for developing and testing recommendation algorithms, http://cran.r-project.org/web/packages/recommenderlab/vignettes/recommenderlab.pdf.
- Hastie, T., Tibsharani, R., and Friedman, J. (2001), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York, NY.
- Hill, W., Stead, L., Rosenstein, M., and Furnas, G. (1995), Recommending and evaluating choices in a virtual community of use, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Denver, CO, 194-201.
- Hoerl, A. E. and Kennard, R. W. (1970), Ridge regression: biased estimation for nonorthogonal problems, Technomerics, 12(1), 55-67. https://doi.org/10.1080/00401706.1970.10488634
- Hwang, W. Y. and Lee, J. S. (2013), Shifting artificial data to detect system failures, International Transactions in Operational Research, Advanced online publication, doi: 10.1111/itor.12047.
- Lee, C. H., Kim, Y. H., and Rhee, P. K. (2001), Web personalization expert with combining collaborative fil-tering and association rule mining technique, Expert Systems with Applications, 21(3), 131-137. https://doi.org/10.1016/S0957-4174(01)00034-3
- Lee, J. S. and Olafsson, S. (2009), Two-way cooperative prediction for collaborative filtering recommendations, Expert Systems with Applications, 36(3), 5353-5361. https://doi.org/10.1016/j.eswa.2008.06.106
- Lee, J. S., Jun, C. H., Lee, J. W., and Kim, S. Y. (2005), Classification-based collaborative filtering using market basket data, Expert Systems with Applications, 29(3), 700-704. https://doi.org/10.1016/j.eswa.2005.04.037
- Leung, C. W., Chan, S. C., and Chung, F. (2008), An empirical study of a cross-level association rule mining approach to cold-start recommendations, Knowledge-Based Systems, 21(7), 515-529. https://doi.org/10.1016/j.knosys.2008.03.012
- Lika, B., Kholomvatsos, K., and Hadjiefthymiades, S. (2014), Facing the cold start problem in recommender systems, Expert Systems with Applications, 41(4), 2065-2073. https://doi.org/10.1016/j.eswa.2013.09.005
- Mild, A. and Reutterer, T. (2001), Collaborative filtering methods for binary market basket data analysis, Active Media Technology, Lecture Notes in Computer Science, 2252, 302-313. https://doi.org/10.1007/3-540-45336-9_35
- Mild, A. and Reutterer, T. (2003), An improved collaborative filtering approach for predicting cross-category purchase based on binary market basket data, Journal of Retailing and Consumer Services, 10(3), 123-133. https://doi.org/10.1016/S0969-6989(03)00003-1
- Park, D. H., Kim, H. K., Choi, I. Y., and Kim, J. K. (2012), A literature review and classification of recommender systems research, Expert Systems with Applications, 39(11), 10059-10072. https://doi.org/10.1016/j.eswa.2012.02.038
- Park, S. T. and Chu, W. (2009), Pairwise preference regression for cold-start recommendation, Proceedings of the third ACM Conference on Recommender Systems (RecSys2009), New York, NY, 21-28.
- Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994), GroupLens: an open architecture for collaborative filtering of netnews, Proceedings of the ACM Conference on Computer Supported Cooperative (CSCW1994), Chapel Hill, NC, 175-186.
- Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001), Item-based collaborative filtering recommendation algorithms, Proceedings of the 10th international World Wide Web Conference (WWW10), Hong Kong, 285-295.
- Schein, A., Popescul A., and Ungar, L. H. (2002), Methods and metrics for cold-start recommendations, Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Tampere, Finland, 253-260.
- Shardanand, U. and Maes, P. (1995), Social information filtering: algorithms for automating word of mouth, Proceedings of ACM Conference on Human Factors in Computing Systems (CHI1995), Vancouver, Canada, 210-217.
- Tibshirani, R. (1996), Regression shrinkage and selection via the lasso, Journal of Royal Statistical Society Series B: Methodological, 58(1), 267-288.
- Zou, H. and Hastie, T. (2005), Regularization and variable selection via the elastic net, Journal of Royal Statistical Society Series B: Statistical Methodology, 67(2), 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x
Cited by
- Variable selection for collaborative filtering with market basket data pp.09696016, 2018, https://doi.org/10.1111/itor.12518
- Further Improvement on Two-Way Cooperative Collaborative Filtering Approaches for the Binary Market Basket Data vol.11, pp.19, 2021, https://doi.org/10.3390/app11198977