
 237

I. INTRODUCTION

Widespread adoption of ubiquitous technologies has led

to the production of a variety of tiny devices used for data

collection (sensors), enabling network connectivity and

performing actions to the environment (actuators). These

devices are the building blocks for a complete, ubiquitous

ecosystem providing a wide variety of solutions ranging

from healthcare monitoring to military battlefield awareness

systems. With an increase in the deployment of these

solutions, the security level of countermeasures has become

an extremely important topic of research. Furthermore, a

secure implementation of the security solutions is often

overlooked.

 Cryptography is the building block of all security systems.

Cryptographic primitives are used in various applications to

provide confidentiality, integrity, and authentication. Although

mathematically strong, sometimes the cryptosystems them-

selves, if poorly implemented, can contain vulnerabilities,

thus posing a risk to the entire system. One of these

implementation vulnerabilities is the side-channel leakage

of critical security properties such as the secret key. This

area of research is called side-channel cryptanalysis and is

the focus of this study.

In this study, we develop software-based countermeasures

against a side-channel cryptanalysis of the Rabbit stream

cipher using a Tmote Sky wireless sensor mote as our target

platform. Improvements to previous countermeasures are

proposed to make the implementation resistant to higher-

order attacks. We formally evaluate our work by using

evaluation standards, such as Federal Information Processing

Standard (FIPS)-140, Common Criteria for Information

Technology Security Evaluation (commonly called Common

Criteria or CC), and the Special Publication (SP) 800 series.

Received 25 March 2014, Revised 11 April 2014, Accepted 27 June 2014
*Corresponding Author Hoon Jae Lee (E-mail: hjlee@dongseo.ac.kr, Tel: +82-51-320-1730)
Cryptography & Network Security Lab., Department of Ubiquitous IT, Dongseo University, Sasang-Gu, Busan 617-716, Korea.

 http://dx.doi.org/10.6109/jicce.2014.12.4.237 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/li­censes/by-

nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

J. lnf. Commun. Converg. Eng. 12(4): 237-245, Dec. 2014 Regular paper

Higher-Order Countermeasures against Side-Channel
Cryptanalysis on Rabbit Stream Cipher

Jonathan A. P. Marpaung, Bruce Ndibanje, and Hoon Jae Lee
*
, Member, KIICE

Cryptography & Network Security Lab., Department of Ubiquitous IT, Dongseo University, Busan 617-716, Korea

Abstract

In this study, software-based countermeasures against a side-channel cryptanalysis of the Rabbit stream cipher were developed

using Moteiv’s Tmote Sky, a popular wireless sensor mote based on the Berkeley TelosB, as the target platform. The

countermeasures build upon previous work by improving mask generation, masking and hiding other components of the

algorithm, and introducing a key refreshment scheme. Our contribution brings improvements to previous countermeasures

making the implementation resistant to higher-order attacks. Four functional metrics, namely resiliency, robustness, resistance,

and scalability, were used for the assessment. Finally, performance costs were measured using memory usage and execution

time. In this work, it was demonstrated that although attacks can be feasibly carried out on unprotected systems, the proposed

countermeasures can also be feasibly developed and deployed on resource-constrained devices, such as wireless sensors.

Index Terms: Rabbit stream cipher, Side-channel cryptanalysis, Software countermeasures, Ubiquitous technology

Open Access

mailto:hjlee@dongseo.ac.kr

J. lnf. Commun. Converg. Eng. 12(4): 237-245, Dec. 2014

http://dx.doi.org/10.6109/jicce.2014.12.4.237 238

We also assess four functional metrics, namely resiliency,

robustness, resistance, and scalability. Finally, we look at the

performance costs of the proposed implementation by

measuring memory usage and execution time.

II. APPROACH

The basic problem that we address is the question of how

to securely implement the Rabbit stream cipher on embedded

systems with the threat of side-channel cryptanalysis. We

assume an attack model where the attack is performed

without physically tampering with or removing the targeted

node from its deployed location. This characteristic is

important as many physical attacks such as fault injection

are not only more efficient but also more intrusive. In fact, a

simple memory dump attack can obtain sensitive infor-

mation in less than 1 minute [1]. In this scenario, we assume

that an intrusion detection system is disabled or fails to

detect side-channel attacks due to the non-intrusive nature

of the attack. The scope of this study is the security of

individual nodes; therefore, the presence or participation of

other nodes is outside the scope of this discussion.

Furthermore, we assume that the adversary is sufficiently

determined to perform a higher-order differential cryp-

tanalysis and is thus capable of bypassing the previously

proposed countermeasures.

Our countermeasures build upon the scheme proposed by

Bae et al. by improving it to address higher-order attacks,

adding an additional layer of complexity, and evaluating the

results using formal verification standards, such as FIPS 140

and Common Criteria. In other words, we want to propose

strong solutions to handle a worst-case-scenario side-

channel attack. We implement these countermeasures in

nesC TinyOS running on the Berkeley TelosB Mote IV.

A. Rabbit

The Rabbit stream cipher was selected for the final

eSTREAM portfolio [2] organized by European Network of

Excellence for Cryptology in 2003 [3]. It is one of

algorithms of the ISO/IEC 18033-4 Stream Ciphers [4] on

ISO Security standardization and was evaluated as having a

DPA attack complexity of ‘medium.’

The Rabbit algorithm is a synchronous stream cipher that

can be briefly described as follows: it takes a 128-bit secret

key and a 64-bit IV as input, and for each iteration,

generates an output block of 128 pseudo-random bits from a

combination of the internal state bits. Encryption/decryption

is done by XORing the pseudo-random data with the

plaintext/ciphertext. The size of the internal state is 513 bits

divided between eight 32-bit state variables, eight 32-bit

counters, and one counter carry bit. The eight state variables

Fig. 1. Rabbit algorithm overview.

are updated by eight coupled non-linear functions. The

counters ensure a lower bound on the period length for the

state variables. Rabbit was designed to be faster than the

commonly used ciphers and to justify a key size of 128 bits

for encrypting up to 2
64

 blocks of plaintext. This means that

for an attacker that does not know the key, it will not be

possible to distinguish up to 2
64

 blocks of cipher output from

the output of a truly random generator, using fewer steps

than required for an exhaustive key search of more than 2
128

keys.

Fig. 1 shows the operations of the algorithm and where

the size of the internal state is 513 bits divided between

eight 32-bit state variables, eight 32-bit counters, and one

counter carry bit. The eight state variables are updated by

eight coupled non-linear functions. The counters ensure a

lower bound on the period length for the state variables.

B. Security Design Goals

Our work has the following security design goals:

1) Limit the window of opportunity for a side-channel

cryptanalysis (Resistance).

2) Increase the complexity for carrying out an attack

(Robustness).

3) Contain the damage of an attack to only the compromised

node (Resilience).

4) Minimize cost and maximize performance (Scalability).

III. PREVIOUS COUNTERMEASURES

Bae et al. [5] were the first to perform a side-channel

cryptanalysis on Rabbit and to propose countermeasures

according to the attack model. Their countermeasures were

based on the masking and hiding processes illustrated in

Fig. 2.

A. Masking

A first-order Boolean masking scheme was used in the

initialization of the master counter states in the key setup

Higher-Order Countermeasures against Side-Channel Cryptanalysis on Rabbit Stream Cipher

http://jicce.org 239

Fig. 2. Bae et al.’s countermeasure scheme (dashed lines, masking;

dotted lines, hiding).

phase and the expansion of the IV in the IV setup phase. The

mask is generated using a random number generator that

takes as input a 16-bit timer and the IV. The masking values

are removed before the next-state function is called in the IV

setup as the counter variables are used for introducing non-

linearity. This scheme removes the correlation between the

power traces and the HW hypothesis by changing the

internal values during every resynchronization of the

algorithm. The authors state that this scheme can prevent the

first-order power analysis attacks but is still vulnerable to a

higher-order differential cryptanalysis. In order to make

such an attack difficult, their scheme is combined with the

hiding mechanisms explained below.

B. Hiding

Hiding is performed by executing critical operations in a

random order. This method is enhanced by adding dummy

operations that shift the execution time making it difficult

for an adversary to isolate the desired leakage that

corresponds to the target operations. The authors hide the

ordering of the counter variable initialization during the IV

setup by randomizing the sequence of the eight iterations.

They use the shuffling method adapted from the stream

cipher RC4, which they acknowledge as being vulnerable to

a side-channel cryptanalysis, along with signal processing

techniques.

A time-shifting mechanism is implemented by inserting

dummy cycles (called ‘no operations’ or ‘nops’) during the

counter variable initialization in the IV setup phase.

Although the number of dummy cycles is randomized, the

execution time needs to be regularly in line with the

principle of a synchronized stream cipher. Therefore, the

Fig. 3. Bae et al.’s countermeasure algorithm.

authors implemented a total of 50 inserted cycles between

the initialization step of the counter variables and the

unmasking step. The detailed countermeasure algorithm is

shown in Fig. 3.

C. Evaluation

The countermeasure proposed by Bae et al. successfully

removes the relationships between the correlation coefficients

and the power traces. The additional costs of running this

implementation on an ATmega 128L is summarized in Table 1.

Table 1. Performance cost of Bae et al.’s countermeasure on ATmega

128L

 Basic cipher
Bae et al.’s

countermeasure

Additional

cost

Flash memory 8.934 kB 10.218 kB 12.3%

SRAM 59 bytes 59 bytes 0%

Execution time 6.6 ms 8.2 ms 24%

J. lnf. Commun. Converg. Eng. 12(4): 237-245, Dec. 2014

http://dx.doi.org/10.6109/jicce.2014.12.4.237 240

Fig. 4. Proposed side-channel attacks (SCA) countermeasures (dashed

lines, masking; dotted lines, hiding).

IV. PROPOSED COUNTERMEASURES

We build upon the work described in the previous section

by proposing additional and improved masking and hiding

schemes, as well as a new key management component. The

new countermeasure scheme is designed to provide

resilience and resistance against higher-order attacks. The

complete countermeasure scheme is illustrated in Fig. 4.

A. Key Management

Most cryptanalytic attacks depend on the ability to obtain

many encryptions performed using a single key. Birthday

attacks on a cipher with a key size of k, for example, require

only 2
k/2

 encryptions performed using the same key.

However, differential cryptanalysis attacks typically have a

higher threshold, requiring many more encryptions.

Therefore, it can be inferred that there have to be a certain

maximum threshold number of encryptions before a key can

no longer be safely used. In this section, we discuss how if

appropriately defined, key management can be used for

defending against a side-channel cryptanalysis.

Key management deals with the generation, exchange,

storage, use, and refreshment of keys. We focus on the idea

of key refreshment and briefly discuss several possible key

exchange mechanisms as we limit our countermeasure

proposal to individual nodes.

1) Key Refreshment

The standard Rabbit encryption scheme using a 128-bit

key can be used for encrypting up to 2
64

 blocks (128 bit) of

plaintext. Bae et al.’s power analysis attack on Rabbit, is

performed during the key and IV setup phase. In a real-

world scenario, if the attack is performed non-intrusively,

without the ability to control when the device initiates the

key setup process, an adversary would have to wait for the

encryption of 2
71

 bits of data before the next setup phase.

Furthermore, the attack model requires 1,000 traces of the

setup phase with the same key but random IVs. Therefore,

an adversary would need to know when the setup phase is

being executed, wait between 2
71

 bits of encryptions to

capture each power trace, and do this 1,000 times assuming

that the same key is used throughout. Further, assuming that

there exists an adversary sufficiently determined to carry out

this attack, we add more complexity to this attack by

introducing a key refreshment mechanism.

The effectiveness of a key is determined not only by its

length but also by the number of encryptions performed

using the same key. Abdalla and Bellare [6] argued that re-

keying (key refreshment) provides a provable increase in the

security of an application. They defined the encryption

threshold Q as the number of k-bit messages that can be

safely encrypted, with Q ≈ 2
k/2

 for the single-key scheme.

By using parallel or serial re-keying methods, they showed

that re-keying every set of 2
k/3

 encryptions increases the

encryption threshold to Q ≈ 2
2k/3

. The sub-key lifetime to l =

2
k/3

 allows significantly more data to be safely encrypted.

We extend this idea as a countermeasure to the side-channel

cryptanalysis attack on Rabbit.

We propose a key refreshment scheme that generates sub-

keys that are used as session keys for communication

between nodes in a wireless sensor network deployment. We

assume that an initial shared master key KM is pre-

distributed in a node and that one or more of the other nodes

depending on the key exchange mechanism are used. A key

derivation function F is a pseudo-random number generator

that takes as input the 128-bit master key, 64-bit IEEE EUI-

64 unique node identifier, 64-bit values of a timer, and 64

bits of entropy. The secure hash function SHA-256 is used

for processing the aforementioned input, essentially deriving

a sub-key by using a keyed-hash message authentication

code (HMAC). The use of system time and extra entropy

ensures that the same sub-key is not generated twice. To

prevent adversaries from obtaining a sufficient number of

encryptions, we limit the lifetime of each sub-key to l = 2
43

encryptions.

2) Key Exchange

Perrig et al. [7] proposed a suite of security protocols for

sensor networks and named it SPINS. Understanding that

public key cryptography protocols consume a considerable

number of resources for sensor nodes, a symmetric protocol

that uses a base station as a trusted agent for key setup was

proposed. In the trust setup, two nodes (A and B) share a

Higher-Order Countermeasures against Side-Channel Cryptanalysis on Rabbit Stream Cipher

http://jicce.org 241

pre-distributed master secret key with base stations XAS and

XBS, respectively. A shared secret session key SKAB is

established. Strong key freshness is ensured by using the

nonces NA and NB. The related key agreement protocol is as

follows:

Another pre-distributed scheme is the have each node

have a unique pairwise key for communication between the

nodes. However, this scheme is costly when the number of

sensors increases beyond the amount of memory available,

which is already limited. Moreover, scalability is difficult to

achieve when new nodes need to be introduced and another

mechanism is required for updating the existing nodes with

the keys of the new nodes.

A random key pre-distribution scheme proposed in [8],

wherein each node receives a randomly chosen ‘ring of

keys,’ is applied to each sensor prior to deployment. Since a

node only knows a subset of potentially hundreds of keys, a

shared-key discovery protocol for key distribution,

revocation, and node re-keying is introduced. This scheme

costs fewer resources on individual nodes and limits the

damage done if a node is compromised. The authors in [9]

worked on improving this scheme by exploiting deployment

knowledge to improve network performance and resilience

against node capture.

Chan and Perrig [10] built upon the work in SPINS by

developing a key distribution scheme using peer inter-

mediaries for key establishment (PIKE). The scheme uses

peer sensor nodes as trusted intermediaries for establishing

keys between any two nodes irrespective of the network

topology or density. Basically, this protocol decentralizes

the role of the trusted base station in SPINS.

B. Masking

Masking the master counter variables and IV expansion

provided a layer of defense against the first-order attacks.

We improve the previous masking countermeasures by also

masking the master state variables, thereby preventing

higher-order attacks. The masking method applied generally

follows the same principle of masking the counter variables

during the key setup phase and then unmasking them before

calling the next-state function. However, we propose

improvements to the method used for mask generation, also

making higher-order attacks difficult to perform.

The first improvement is to use different masks for the

counter variables, IV expansion, and master state variables.

This will make it difficult for the adversaries to obtain each

of these values even if they manage to find one of the masks.

The second improvement is to use a stronger pseudo-

random number generator for creating the masks. While the

previous scheme used an unnamed random number

generator that took as input a 16-bit timer and the counter

register of the chip, we propose the use of the SHA-256

hash function taking as input a 64-bit timer, 64-bit IEEE

EUI-64 unique node identifier, and 256-bit entropy. Code

efficiency is achieved by reusing the same SHA-256

function in the key refreshment mechanism. The modifi-

cation to Bae et al.’s techniques is described in Fig. 5.

C. Hiding

The same technique for time shifting and random

ordering of initialization operations is applied to hide the

recovery of the masked state variables and the execution of

the next-state function. The complete masking and hiding

technique used in this improved countermeasure scheme is

summarized in Figs. 6 and 7.

Input :IV, Counter variables State variable, Masking variables(seed)
Output: Recovered Counters

1. CounterMask=SHA256(64bitTimer,64bitIEEE-EUI-UNI,

256bits-Entropy)

2. //masked master counter states

3. for j=0 to 7 do

4. master_c[j]=CounterMask[j]c[j]x[(j+4)&0x7

5. end for

6. IVMAsk= SHA256(64bitTimer,64bitIEEE-EUI-UNI,256bits-

Entropy)

7. //masked IV expansion

8. I[0]=IV[31,…0]IVMask[0]

9. I[2]=IV[63,…32]IVMask[2]

10. I[4]=IV[31,…0]IVMask[4]

11. I[6]=IV[63,…32]IVMask[6]

12. I[1]=((I[0]>>16)|(I[2]&0xFFFF0000)) IVMask[1]

13. I[3]=((I[2]<<16)|(I[0]&0x0000FFFF)) IVMask[3]

14. I[5]=((I[0]>>16)|(I[2]&0xFFFF0000)) IVMask[5]

15. I[7]=((I[2]<<16)|(I[0]&0x0000FFFF)) IVMask[7]

16. Initialization step of masked-counter states and masked IV

17. For j=0to7 do

18. Select randomly, only one time from j=0to 7

19. Insert random cycles(n) and select n randomly

20. c[j]=master_c[j]  I[j]

21. end for

22. carry=master_carry

23. //hidden recovery of initialized counter variables

24. for j=0to 7 do

25. Select j randomly, only one time from j=0 to 7

26. Insert random cycles(50-n)

27. C[j]=(CounterMask[j]c[j]IVMask[j]

28. end for

29. Return c[j]

Fig. 5. Improved countermeasures for IV and counter variables.

J. lnf. Commun. Converg. Eng. 12(4): 237-245, Dec. 2014

http://dx.doi.org/10.6109/jicce.2014.12.4.237 242

Input: State variables, Counter variables

1. // hidden next operations

2. While next counter variables being instantiated

3. Insert random cycles

4. end while

5. While next state variables being instantiated

6. Insert random cycles

7. end while

Fig. 6. Proposed hiding of next-state function.

Input: State variables, Masking variables(seed)

Output : Recovered State

1. // generation of random mask

2. Mask=SHA256(64bitTimer,64bitIEEE-EUI-UNI, 256bits-

Entropy)

3. //masked master states

4. master_x[0]=SK[0]Mask[0]

5. master_x[2]=SK[1]Mask[2]

6. master_x[4]=SK[2]Mask[4]

7. master_x[6]=SK[3]Mask[6]

8. master_x[1]=((SK[3]<<16)|(SK[2]>>16))Mask[1]

9. master_x[3]=((SK[0]<<16)|(SK[3]>>16))Mask[3]

10. master_x[5]=((SK[1]<<16)|(SK[0]>>16))Mask[5]

11. master_x[7]=((SK[2]<<16)|(SK[1]>>16))Mask[7]

12. //hidden recovery of initialized state variables

13. For j=0to 7 do

14. Select j randomly, only one time from j=0 to 7

15. Insert random cycles(50-n)

16. x[j]=(Mask[j]  master_x[j])

17. end for

18. Return x[j]

Fig. 7. Proposed masking of state variables.

V. RESULTS

We evaluated the proposed countermeasure scheme by

using formal evaluation standards, functional metrics, and

performance metrics.

A. Formal Evaluation Framework Management

1) FIPS PUB 140-3 Draft

Currently, under public review, the FIPS PUB 140-3

Draft (2009) specifies the security requirements for cryp-

tographic modules [11]. Also published under ISO/IEC

19790:2012, the standard defines four increasing levels of

security that cover a range of applications and environments

in which the crypto modules can be deployed. Although

under this standard only the National Institute of Standards

and Technology (NIST)-approved cryptographic algorithms

are allowed, we apply the rest of the requirements to

evaluate the Rabbit countermeasures. A side-channel cryp-

tanalysis on Rabbit falls under the category of non-invasive

attacks that are governed by Security Levels 3 and 4.

At Security Level 3, the cryptographic module shall

protect the module’s critical security parameters (e.g., secret

keys) against all of the applicable non-invasive attacks

specified in Annex F of the abovementioned draft.

Documentation is required to specify the mitigation

techniques employed against these attacks, how the

techniques work, and their effectiveness. Annexure F

specifies the definitions of the non-invasive attack methods

covered under this standard including correlation power

analysis (CPA), differential power analysis (DPA),

differential electro-magnetic analysis (DEMA), simple

power analysis (SPA), simple electro-magnetic analysis

(SEMA), and timing analysis (TA). Based on these

definitions, the countermeasures proposed for Rabbit fulfill

the requirements for Security Level 3.

At Security Level 4, the module shall undergo testing and

shall meet the requirements defined by the validation

authority. Since we did not perform a higher-order attack to

test the new countermeasures, our proposal does not meet

the requirements for this security level. However, the basic

countermeasures proposed by Bae et al. have been tested

against first-order attacks, thereby permitting the verification

of Security Level 4 up to the first-order attacks.

2) Common Criteria

The Common Criteria for Information Technology Security

Evaluation (Common Criteria or CC) is an international

standard for computer security certification [12]. Published

as ISO/IEC 15408, it provides a framework for specifying

security functional requirements (SFR) and security

assurance requirements (SAR) by defining and using

protection profiles (PPs) for a class of security devices and

security targets (STs) to identify the security properties for a

specific target of evaluation (TOE). Details of specific

cryptographic algorithms and implementations are outside

of the scope of CC. Further, the evaluation assurance levels

(EALs) provide an increasing metric of the level of

assurance obtained and range from EAL1 (Functionally

Tested) to EAL7 (Formally Verified Design and Tested).

The cryptographic module, security level “enhanced”

PP written by the German government’s Federal Office

for Information Security (BSI) describes the security

requirements for cryptographic modules [13]. A security

requirement for handling side-channel attacks is defined

under the assurance family FPT_EMSEC:

“This family defines requirements to mitigate intelligible

emanations. The requirements address the level of resistance

of the cryptographic module against side-channel attacks

such as timing analysis, simple power analysis (SPA),

differential power analysis (DPA), electromagnetic emanation

analysis (EMEA), and template attacks. If the cryptographic

Higher-Order Countermeasures against Side-Channel Cryptanalysis on Rabbit Stream Cipher

http://jicce.org 243

module applies masking, the requirements also address the

level of resistance of the cryptographic module against a

higher-order side-channel analysis.”

Based on the definition above, the proposed coun-

termeasures fulfill the assurance family FPT_EMSEC

requirements for a side-channel cryptanalysis. A general

vulnerability assessment of possible covert channels (side-

channels) can also be investigated under class AVA, but the

specification from BSI adequately covers the requirements

in detail.

3) SP 800-90A

NIST SP 800-90A specifies the recommendation for

random number generation using deterministic random bit

generators (DRBGs) [14]. We evaluate the DRBGs used in

our countermeasures according to this standard. For hash-

based DRBGs, the document recommends the use of an

NIST-approved hash function such as the SHA family of

secure hashes. The document states that the input to this

function should primarily consist of entropy and other

inputs in order to provide a security cushion. The minimum

entropy required for instantiation and reseeding should have

the same length as the desired security strength. Ideally, the

input entropy should be equal to or greater than 3/2 of the

desired security strength (in bits). Furthermore, the Recom-

mendation strongly advises the use of a personalization

string.

The proposed countermeasures employ the SHA-256

function and takes as input 256 bits of entropy along with a

64-bit timer and a 64-bit unique node identifier. As the

required security strength of the mask is 256 bits, the

recommended entropy input length is met. Therefore, on the

basis of this Recommendation, the DRBGs used in the

proposed countermeasures fulfill the security requirements

specified.

4) SP 800-108

NIST SP 800-108 specifies the recommendation for key

derivation using pseudo-random functions [15]. The

document identifies a pseudo-random function as the basic

building block of key derivation functions. The Recom-

mendation approves the use of the keyed hash message

authentication code (HMAC) or the cipher-based message

authentication code as the pseudo-random function. The key

refreshment procedure defined in the proposed counter-

measure fulfills this basic requirement. The document

further specifies a family of key derivation functions based

on several modes that enable different parties to obtain the

same keys from the derived keying material. Since key

exchange is beyond the scope of this study, it is unnecessary

to evaluate the key refreshment proposal against these

techniques.

B. Functional Metrics

Earlier, we defined the research problem as how to

securely implement the Rabbit stream cipher against a

higher-order side-channel cryptanalysis while assuming that

other defense mechanisms, such as intrusion detection

systems cannot prevent or detect such attacks. We evaluate

the achievement of the security design goals by using the

functional metrics of resilience, resistance, scalability, and

robustness.

1) Resistance

The first security design goal is to provide resistance

against a side-channel cryptanalysis by limiting an

adversary’s window of opportunity. This goal is achieved by

employing a key refreshment scheme and limiting the sub-

key lifetime to l = 2
43

 encryptions. By limiting the number

of encryptions performed under each key, a sufficient

number of traces cannot be obtained to carry out the attack.

2) Robustness

The robustness of the countermeasures can be defined as

the complexity for carrying out an attack. We increased this

complexity by masking the master state, applying different

masks for different variables, and randomizing the execution

of critical operations. By using these techniques, we

achieved the second security design goal.

3) Resilience

By applying the proposed countermeasures, even if an

adversary manages to optimize the attack by reducing the

number of traces needed, obtaining one key is not enough to

gain access to the entire network. Different nodes and

communication sessions use different sub-keys; therefore,

the damage is limited to the compromised node. Moreover,

the next session key cannot be derived from only the current

session key, creating an additional time constraint.

4) Scalability

Being software-based, the countermeasures can be

implemented with ease even across the existing systems.

Furthermore, since only the key and IV setup phase is

targeted, minimum cost is incurred as most these operations

are not performed during normal encryption/decryption.

Therefore, it can be concluded that this solution can be

widely deployed without incurring a significant overhead

cost as the network grows.

C. Performance Metrics

The overall costs are summarized in Table 2. The cou-

ntermeasures consume mostly more flash memory (ROM)

with negligible overhead of SRAM and execution time.

J. lnf. Commun. Converg. Eng. 12(4): 237-245, Dec. 2014

http://dx.doi.org/10.6109/jicce.2014.12.4.237 244

Table 2. Performance cost of countermeasures on Tmote Sky

 Basic cipher
With proposed

countermeasures

Additional

costs

Flash memory 10,334 bytes 14,749 bytes 43%

SRAM 5,449 bytes 5,618 bytes 3%

Execution time 35 ms 36 ms 2%

VI. DISCUSSION AND CONCLUSIONS

A. Summary of Contributions

In this work, we proposed and developed software-based

countermeasures for the Rabbit stream cipher to defend

against higher-order side-channel attacks. The counter-

measures build upon previous work by improving the mask

generation, masking and hiding other components of the

algorithm, and introducing a key refreshment scheme. We

ported Rabbit to TinyOS as to the best of our knowledge, no

one has written an implementation in nesC thus far.

Through experiments using the Berkeley Telos B mote as

the target platform, we evaluated the performance of the

proposed scheme. Furthermore, we evaluated the security

strength of the scheme by using FIPS PUB 140-3, the SP

800 Series, and Common Criteria. The overall scheme

fulfills the security design goals that we set of being

resistant to higher-order attacks, resilient against a single-

node compromise, robust against determined adversaries,

and scalable for deployment in wireless sensor networks.

B. Concluding Remarks

Ubiquitous computing applications are prone to a side-

channel cryptanalysis if the design and implementation of

cryptosystems do not take this class of attack into

consideration. Since the use of ubiquitous technologies is

becoming more widespread, adversaries can be expected to

emerge and take advantage of these vulnerabilities. In this

work, however, we demonstrated that although the attacks

can be feasibly carried out on unprotected systems,

countermeasures can be feasibly developed and deployed on

resource-constrained devices such as wireless sensors.

Various methods can be used for increasing the com-

plexity of performing a side-channel cryptanalysis, thus

making it an undesirable attack vector for the adversaries.

We focused on software-based countermeasures that altered

specific implementation issues and cryptosystem design

considerations. Other potential methods include physical

aspects such as improving the design of microcontroller

boards that make it difficult to isolate a clear power trace

from GND or VCC. The basic goal of a countermeasure is

to introduce mechanisms that reduce the feasibility of

carrying out an attack, be it preventing the capture of clear

power traces or hiding meaningful information in the power

traces.

C. Future Work

To further assess the threat of a side-channel cryp-

tanalysis against Rabbit, we recommend that future work be

focused on testing higher-order attacks against the proposed

countermeasure scheme and on performing attacks on real-

world cryptosystems, such as CyaSSL or SSH.

ACKNOWLEDGMENTS

This research was supported by Basic Science Research

Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Education, Science

and Technology. (NRF, 2014) This research was also

supported by the BB21 project of Busan Metropolitan City.

REFERENCES

[1] C. Hartung, J. Balasalle, and R. Han, “Node compromise in sensor

networks: the need for secure systems,” Department of Computer

Science, University of Colorado at Boulder, Technical Report CU-

CS-990-05, 2005.

[2] Ecrypt stream cipher project [Internet], Available: http://www.ecry

pt.eu.org/stream/.

[3] European Network of Excellence for Cryptology II (ECRYPT II)

[Internet], Available: http://www.ecrypt.eu.org/.

[4] Information technology - Security techniques - Encryption

algorithms - Part 4: Stream ciphers, ISO/IEC 18033-4:2011, 2011.

[5] K. Bae, M. Ahn, H. Lee, J. Ha, and S. Moon, “Power analysis

attack and countermeasure on the Rabbit Stream Cipher,” in

Proceedings of the 7th International Workshop on Software

Engineering for Secure Systems, Honolulu, HI, pp. 50-56, 2011.

[6] M. Abdalla and M. Bellare, “Increasing the lifetime of a key: a

comparative analysis of the security of re-keying techniques,”

in Advances in Cryptology (ASIACRYPT 2000). Heidelberg:

Springer, pp. 546-559, 2000.

[7] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler,

“SPINS: security protocols for sensor networks,” Wireless

Networks, vol. 8, no. 5, pp. 521-534, 2002.

[8] L. Eschenauer and V. D. Gligor, “A key-management scheme for

distributed sensor networks,” in Proceedings of the 9th ACM

Conference on Computer and Communications Security,

Washington, DC, pp. 41-47, 2002.

[9] W. Du, J. Deng, Y. S. Han, S. Chen, and P. K. Varshney, “A key

management scheme for wireless sensor networks using

deployment knowledge,” in Proceedings of the 23rd Annual Joint

Conference of the IEEE Computer and Communications Societies,

Hong Kong, China, 2004.

http://www.ecrypt.eu.org/

Higher-Order Countermeasures against Side-Channel Cryptanalysis on Rabbit Stream Cipher

http://jicce.org 245

[10] H. Chan and A. Perrig, “PIKE: peer intermediaries for key

establishment in sensor networks,” in Proceedings of the 24th

Annual Joint Conference of the IEEE Computer and

Communications Societies, Miami, FL, pp. 524-535, 2005.

[11] National Institute of Standards and Technology, “Security

requirements of cryptographic modules,” FIPS 140-3, 2009.

[12] Common Criteria for Information Technology Security Evaluation

[Internet], Available: http://www.commoncriteriaportal.org/cc/.

[13] German Federal Office for Information Security, Common Criteria -

Protection Profile Cryptographic Modules, Security Level

‘Enhanced’. Bonn: German Federal Office for Information

Security, 2008.

[14] National Institute of Standards and Technology, Recommendation

for Random Number Generation Using Deterministic Random Bit

Generators (SP 800-90A). Gaithersburg, MD: National Institute of

Standards and Technology, 2012.

[15] National Institute of Standards and Technology, Recommendation

for Key Derivation Using Pseudorandom Functions (SP 800-108).

Gaithersburg, MD: National Institute of Standards and Technology,

2009.

Jonathan A. P. Marpaung
received his B.Sc. in Computer Science from the University of Indonesia in 2010, and completed his master’s degree
working in the Cryptography & Network Security Lab of Dongseo University in 2013. He is currently affiliated with
Spentera Security of Jakarta. His research interests include cryptographic engineering, side-channel cryptanalysis,
software and systems security, and malware engineering.

Bruce Ndibanje
received his B.Sc. in Computer Sciences from Ngozi University, Burundi, in 2006, and his M.S. in Ubiquitous IT from
Dongseo University in 2013. He has worked with many companies in the ICT domain, including Huawei, United
Nations, and Econet Wireless Burundi. In 2013, he joined the Cryptography and Network Security Lab at Dongseo
University, Busan, Korea, as Doctorate Researcher. His research interests include wireless and sensor networks;
authentication protocol; security in e-healthcare systems, cloud computing, and cellular networks; side-channel
attacks, and countermeasures. He is a member of the IEEE Computer Society.

Hoon Jae Lee
received his B.S., M.S., and Ph.D. in Electrical Engineering from Kyungpook National University in 1985, 1987, and
1998, respectively. He was engaged in the research on cryptography and network security at Agency for Defense
Development from 1987 to 1998. In 2002, he joined Department of Computer Engineering at Dongseo University as
an associate professor and is now a full professor. He has published more than 250 papers and 50 patents. He has
served as a reviewer for many international conferences and journals. His current research interests include security
communication systems, side-channel attacks, USN, and RFID security. He is a member of the Korea Institute of
Information Security and Cryptology, IEEE Computer Society, and IEEE Information Theory Society, among others.

http://www.commoncriteriaportal.org/cc/

