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I. INTRODUCTION 
 

Widespread adoption of ubiquitous technologies has led 

to the production of a variety of tiny devices used for data 

collection (sensors), enabling network connectivity and 

performing actions to the environment (actuators). These 

devices are the building blocks for a complete, ubiquitous 

ecosystem providing a wide variety of solutions ranging 

from healthcare monitoring to military battlefield awareness 

systems. With an increase in the deployment of these 

solutions, the security level of countermeasures has become 

an extremely important topic of research. Furthermore, a 

secure implementation of the security solutions is often 

overlooked.  

  Cryptography is the building block of all security systems. 

Cryptographic primitives are used in various applications to 

provide confidentiality, integrity, and authentication. Although 

mathematically strong, sometimes the cryptosystems them-

selves, if poorly implemented, can contain vulnerabilities, 

thus posing a risk to the entire system. One of these 

implementation vulnerabilities is the side-channel leakage 

of critical security properties such as the secret key. This 

area of research is called side-channel cryptanalysis and is 

the focus of this study. 

In this study, we develop software-based countermeasures 

against a side-channel cryptanalysis of the Rabbit stream 

cipher using a Tmote Sky wireless sensor mote as our target 

platform. Improvements to previous countermeasures are 

proposed to make the implementation resistant to higher-

order attacks. We formally evaluate our work by using 

evaluation standards, such as Federal Information Processing 

Standard (FIPS)-140, Common Criteria for Information 

Technology Security Evaluation (commonly called Common 

Criteria or CC), and the Special Publication (SP) 800 series. 
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Abstract 

In this study, software-based countermeasures against a side-channel cryptanalysis of the Rabbit stream cipher were developed 

using Moteiv’s Tmote Sky, a popular wireless sensor mote based on the Berkeley TelosB, as the target platform. The 

countermeasures build upon previous work by improving mask generation, masking and hiding other components of the 

algorithm, and introducing a key refreshment scheme. Our contribution brings improvements to previous countermeasures 

making the implementation resistant to higher-order attacks. Four functional metrics, namely resiliency, robustness, resistance, 

and scalability, were used for the assessment. Finally, performance costs were measured using memory usage and execution 

time. In this work, it was demonstrated that although attacks can be feasibly carried out on unprotected systems, the proposed 

countermeasures can also be feasibly developed and deployed on resource-constrained devices, such as wireless sensors. 
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We also assess four functional metrics, namely resiliency, 

robustness, resistance, and scalability. Finally, we look at the 

performance costs of the proposed implementation by 

measuring memory usage and execution time. 

 

 

II. APPROACH 
 

The basic problem that we address is the question of how 

to securely implement the Rabbit stream cipher on embedded 

systems with the threat of side-channel cryptanalysis. We 

assume an attack model where the attack is performed 

without physically tampering with or removing the targeted 

node from its deployed location. This characteristic is 

important as many physical attacks such as fault injection 

are not only more efficient but also more intrusive. In fact, a 

simple memory dump attack can obtain sensitive infor-

mation in less than 1 minute [1]. In this scenario, we assume 

that an intrusion detection system is disabled or fails to 

detect side-channel attacks due to the non-intrusive nature 

of the attack. The scope of this study is the security of 

individual nodes; therefore, the presence or participation of 

other nodes is outside the scope of this discussion. 

Furthermore, we assume that the adversary is sufficiently 

determined to perform a higher-order differential cryp-

tanalysis and is thus capable of bypassing the previously 

proposed countermeasures. 

Our countermeasures build upon the scheme proposed by 

Bae et al. by improving it to address higher-order attacks, 

adding an additional layer of complexity, and evaluating the 

results using formal verification standards, such as FIPS 140 

and Common Criteria. In other words, we want to propose 

strong solutions to handle a worst-case-scenario side-

channel attack. We implement these countermeasures in 

nesC TinyOS running on the Berkeley TelosB Mote IV.  

 

A. Rabbit 
 

The Rabbit stream cipher was selected for the final 

eSTREAM portfolio [2] organized by European Network of 

Excellence for Cryptology in 2003 [3]. It is one of 

algorithms of the ISO/IEC 18033-4 Stream Ciphers [4] on 

ISO Security standardization and was evaluated as having a 

DPA attack complexity of ‘medium.’ 

The Rabbit algorithm is a synchronous stream cipher that 

can be briefly described as follows: it takes a 128-bit secret 

key and a 64-bit IV as input, and for each iteration, 

generates an output block of 128 pseudo-random bits from a 

combination of the internal state bits. Encryption/decryption 

is done by XORing the pseudo-random data with the 

plaintext/ciphertext. The size of the internal state is 513 bits 

divided between eight 32-bit state variables, eight 32-bit 

counters, and one counter carry bit. The eight state variables  

 
Fig. 1. Rabbit algorithm overview. 

 

 

are updated by eight coupled non-linear functions. The 

counters ensure a lower bound on the period length for the 

state variables. Rabbit was designed to be faster than the 

commonly used ciphers and to justify a key size of 128 bits 

for encrypting up to 2
64

 blocks of plaintext. This means that 

for an attacker that does not know the key, it will not be 

possible to distinguish up to 2
64

 blocks of cipher output from 

the output of a truly random generator, using fewer steps 

than required for an exhaustive key search of more than 2
128

 

keys. 

Fig. 1 shows the operations of the algorithm and where 

the size of the internal state is 513 bits divided between 

eight 32-bit state variables, eight 32-bit counters, and one 

counter carry bit. The eight state variables are updated by 

eight coupled non-linear functions. The counters ensure a 

lower bound on the period length for the state variables. 

 

B. Security Design Goals 
 

Our work has the following security design goals: 

1) Limit the window of opportunity for a side-channel 

cryptanalysis (Resistance). 

2) Increase the complexity for carrying out an attack 

(Robustness). 

3) Contain the damage of an attack to only the compromised 

node (Resilience). 

4) Minimize cost and maximize performance (Scalability). 

 

 

III. PREVIOUS COUNTERMEASURES 

 

Bae et al. [5] were the first to perform a side-channel 

cryptanalysis on Rabbit and to propose countermeasures 

according to the attack model. Their countermeasures were 

based on the masking and hiding processes illustrated in 

Fig. 2. 

 

A. Masking 
 

A first-order Boolean masking scheme was used in the 

initialization of the master counter states in the key setup 
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Fig. 2. Bae et al.’s countermeasure scheme (dashed lines, masking; 

dotted lines, hiding). 
 
 

phase and the expansion of the IV in the IV setup phase. The 

mask is generated using a random number generator that 

takes as input a 16-bit timer and the IV. The masking values 

are removed before the next-state function is called in the IV 

setup as the counter variables are used for introducing non-

linearity. This scheme removes the correlation between the 

power traces and the HW hypothesis by changing the 

internal values during every resynchronization of the 

algorithm. The authors state that this scheme can prevent the 

first-order power analysis attacks but is still vulnerable to a 

higher-order differential cryptanalysis. In order to make 

such an attack difficult, their scheme is combined with the 

hiding mechanisms explained below. 

  

B. Hiding 
 

Hiding is performed by executing critical operations in a 

random order. This method is enhanced by adding dummy 

operations that shift the execution time making it difficult 

for an adversary to isolate the desired leakage that  

corresponds to the target operations. The authors hide the 

ordering of the counter variable initialization during the IV 

setup by randomizing the sequence of the eight iterations. 

They use the shuffling method adapted from the stream 

cipher RC4, which they acknowledge as being vulnerable to 

a side-channel cryptanalysis, along with signal processing 

techniques. 

A time-shifting mechanism is implemented by inserting 

dummy cycles (called ‘no operations’ or ‘nops’) during the 

counter variable initialization in the IV setup phase. 

Although the number of dummy cycles is randomized, the 

execution time needs to be regularly in line with the 

principle of a synchronized stream cipher. Therefore, the  

 

Fig. 3. Bae et al.’s countermeasure algorithm. 

 

 

authors implemented a total of 50 inserted cycles between 

the initialization step of the counter variables and the 

unmasking step. The detailed countermeasure algorithm is 

shown in Fig. 3. 
 

C. Evaluation 
 

The countermeasure proposed by Bae et al. successfully 

removes the relationships between the correlation coefficients 

and the power traces. The additional costs of running this 

implementation on an ATmega 128L is summarized in Table 1. 

 

 

Table 1. Performance cost of Bae et al.’s countermeasure on ATmega 

128L 

 Basic cipher 
Bae et al.’s 

countermeasure 

Additional 

cost 

Flash memory 8.934 kB 10.218 kB 12.3% 

SRAM 59 bytes 59 bytes 0% 

Execution time 6.6 ms 8.2 ms 24% 
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Fig. 4. Proposed side-channel attacks (SCA) countermeasures (dashed 

lines, masking; dotted lines, hiding). 

 
 
IV. PROPOSED COUNTERMEASURES 

 

We build upon the work described in the previous section 

by proposing additional and improved masking and hiding 

schemes, as well as a new key management component. The 

new countermeasure scheme is designed to provide 

resilience and resistance against higher-order attacks. The 

complete countermeasure scheme is illustrated in Fig. 4. 

 

A. Key Management 

 

Most cryptanalytic attacks depend on the ability to obtain 

many encryptions performed using a single key. Birthday 

attacks on a cipher with a key size of k, for example, require 

only 2
k/2

 encryptions performed using the same key. 

However, differential cryptanalysis attacks typically have a 

higher threshold, requiring many more encryptions. 

Therefore, it can be inferred that there have to be a certain 

maximum threshold number of encryptions before a key can 

no longer be safely used. In this section, we discuss how if 

appropriately defined, key management can be used for 

defending against a side-channel cryptanalysis. 

Key management deals with the generation, exchange, 

storage, use, and refreshment of keys. We focus on the idea 

of key refreshment and briefly discuss several possible key 

exchange mechanisms as we limit our countermeasure 

proposal to individual nodes. 

 

1) Key Refreshment 

The standard Rabbit encryption scheme using a 128-bit 

key can be used for encrypting up to 2
64

 blocks (128 bit) of 

plaintext. Bae et al.’s power analysis attack on Rabbit, is 

performed during the key and IV setup phase. In a real-

world scenario, if the attack is performed non-intrusively, 

without the ability to control when the device initiates the 

key setup process, an adversary would have to wait for the 

encryption of 2
71

 bits of data before the next setup phase. 

Furthermore, the attack model requires 1,000 traces of the 

setup phase with the same key but random IVs. Therefore, 

an adversary would need to know when the setup phase is 

being executed, wait between 2
71

 bits of encryptions to 

capture each power trace, and do this 1,000 times assuming 

that the same key is used throughout. Further, assuming that 

there exists an adversary sufficiently determined to carry out 

this attack, we add more complexity to this attack by 

introducing a key refreshment mechanism. 

The effectiveness of a key is determined not only by its 

length but also by the number of encryptions performed 

using the same key. Abdalla and Bellare [6] argued that re-

keying (key refreshment) provides a provable increase in the 

security of an application. They defined the encryption 

threshold Q as the number of k-bit messages that can be 

safely encrypted, with Q ≈ 2
k/2

 for the single-key scheme. 

By using parallel or serial re-keying methods, they showed 

that re-keying every set of 2
k/3

 encryptions increases the 

encryption threshold to Q ≈ 2
2k/3

. The sub-key lifetime to l = 

2
k/3

 allows significantly more data to be safely encrypted. 

We extend this idea as a countermeasure to the side-channel 

cryptanalysis attack on Rabbit. 

We propose a key refreshment scheme that generates sub-

keys that are used as session keys for communication 

between nodes in a wireless sensor network deployment. We 

assume that an initial shared master key KM is pre-

distributed in a node and that one or more of the other nodes 

depending on the key exchange mechanism are used. A key 

derivation function F is a pseudo-random number generator 

that takes as input the 128-bit master key, 64-bit IEEE EUI-

64 unique node identifier, 64-bit values of a timer, and 64 

bits of entropy. The secure hash function SHA-256 is used 

for processing the aforementioned input, essentially deriving 

a sub-key by using a keyed-hash message authentication 

code (HMAC). The use of system time and extra entropy 

ensures that the same sub-key is not generated twice. To 

prevent adversaries from obtaining a sufficient number of 

encryptions, we limit the lifetime of each sub-key to l = 2
43

 

encryptions. 

 

2) Key Exchange 

Perrig et al. [7] proposed a suite of security protocols for 

sensor networks and named it SPINS. Understanding that 

public key cryptography protocols consume a considerable 

number of resources for sensor nodes, a symmetric protocol 

that uses a base station as a trusted agent for key setup was 

proposed. In the trust setup, two nodes (A and B) share a 
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pre-distributed master secret key with base stations XAS and 

XBS, respectively. A shared secret session key SKAB is 

established. Strong key freshness is ensured by using the 

nonces NA and NB. The related key agreement protocol is as 

follows: 

 

 
 

Another pre-distributed scheme is the have each node 

have a unique pairwise key for communication between the 

nodes. However, this scheme is costly when the number of 

sensors increases beyond the amount of memory available, 

which is already limited. Moreover, scalability is difficult to 

achieve when new nodes need to be introduced and another 

mechanism is required for updating the existing nodes with 

the keys of the new nodes. 

A random key pre-distribution scheme proposed in [8], 

wherein each node receives a randomly chosen ‘ring of 

keys,’ is applied to each sensor prior to deployment. Since a 

node only knows a subset of potentially hundreds of keys, a 

shared-key discovery protocol for key distribution, 

revocation, and node re-keying is introduced. This scheme 

costs fewer resources on individual nodes and limits the 

damage done if a node is compromised. The authors in [9] 

worked on improving this scheme by exploiting deployment 

knowledge to improve network performance and resilience 

against node capture. 

Chan and Perrig [10] built upon the work in SPINS by 

developing a key distribution scheme using peer inter-

mediaries for key establishment (PIKE). The scheme uses 

peer sensor nodes as trusted intermediaries for establishing 

keys between any two nodes irrespective of the network 

topology or density. Basically, this protocol decentralizes 

the role of the trusted base station in SPINS. 

 

B. Masking 

 

Masking the master counter variables and IV expansion 

provided a layer of defense against the first-order attacks. 

We improve the previous masking countermeasures by also 

masking the master state variables, thereby preventing 

higher-order attacks. The masking method applied generally 

follows the same principle of masking the counter variables 

during the key setup phase and then unmasking them before 

calling the next-state function. However, we propose 

improvements to the method used for mask generation, also 

making higher-order attacks difficult to perform. 

The first improvement is to use different masks for the 

counter variables, IV expansion, and master state variables. 

This will make it difficult for the adversaries to obtain each 

of these values even if they manage to find one of the masks. 

The second improvement is to use a stronger pseudo-

random number generator for creating the masks. While the 

previous scheme used an unnamed random number 

generator that took as input a 16-bit timer and the counter 

register of the chip, we propose the use of the SHA-256 

hash function taking as input a 64-bit timer, 64-bit IEEE 

EUI-64 unique node identifier, and 256-bit entropy. Code 

efficiency is achieved by reusing the same SHA-256 

function in the key refreshment mechanism. The modifi-

cation to Bae et al.’s techniques is described in Fig. 5. 

 

C. Hiding 

 

The same technique for time shifting and random 

ordering of initialization operations is applied to hide the 

recovery of the masked state variables and the execution of 

the next-state function. The complete masking and hiding 

technique used in this improved countermeasure scheme is 

summarized in Figs. 6 and 7. 

 

 

Input :IV, Counter variables State variable, Masking variables(seed) 
Output: Recovered Counters 

1. CounterMask=SHA256(64bitTimer,64bitIEEE-EUI-UNI, 

256bits-Entropy) 

2. //masked master counter states 

3. for j=0 to 7 do 

4. master_c[j]=CounterMask[j]c[j]x[(j+4)&0x7 

5. end for 

6. IVMAsk= SHA256(64bitTimer,64bitIEEE-EUI-UNI,256bits-

Entropy) 

7. //masked IV expansion 

8. I[0]=IV[31,…0]IVMask[0] 

9. I[2]=IV[63,…32]IVMask[2] 

10. I[4]=IV[31,…0]IVMask[4] 

11. I[6]=IV[63,…32]IVMask[6] 

12. I[1]=((I[0]>>16)|(I[2]&0xFFFF0000)) IVMask[1] 

13. I[3]=((I[2]<<16)|(I[0]&0x0000FFFF)) IVMask[3] 

14. I[5]=((I[0]>>16)|(I[2]&0xFFFF0000)) IVMask[5] 

15. I[7]=((I[2]<<16)|(I[0]&0x0000FFFF)) IVMask[7] 

16. Initialization step of masked-counter states and masked IV 

17. For j=0to7 do 

18. Select randomly, only one time from j=0to 7 

19. Insert random cycles(n) and select n randomly 

20. c[j]=master_c[j]  I[j] 

21. end for 

22. carry=master_carry 

23. //hidden recovery of initialized counter variables 

24. for j=0to 7 do 

25. Select j randomly, only one time from j=0 to 7 

26. Insert random cycles(50-n) 

27. C[j]=(CounterMask[j]c[j]IVMask[j] 

28. end for 

29. Return c[j] 

Fig. 5. Improved countermeasures for IV and counter variables. 
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Input: State variables, Counter variables 

1. // hidden next operations 

2. While next counter variables being instantiated 

3. Insert random cycles 

4. end while 

5. While next state variables being instantiated 

6. Insert random cycles 

7. end while 

Fig. 6. Proposed hiding of next-state function. 

 

 

Input: State variables, Masking variables(seed) 

Output : Recovered State 

1. // generation of random mask 

2. Mask=SHA256(64bitTimer,64bitIEEE-EUI-UNI, 256bits-

Entropy) 

3. //masked master states 

4. master_x[0]=SK[0]Mask[0] 

5. master_x[2]=SK[1]Mask[2] 

6. master_x[4]=SK[2]Mask[4] 

7. master_x[6]=SK[3]Mask[6] 

8. master_x[1]=((SK[3]<<16)|(SK[2]>>16))Mask[1] 

9. master_x[3]=((SK[0]<<16)|(SK[3]>>16))Mask[3] 

10. master_x[5]=((SK[1]<<16)|(SK[0]>>16))Mask[5] 

11. master_x[7]=((SK[2]<<16)|(SK[1]>>16))Mask[7] 

12. //hidden recovery of initialized state variables 

13. For j=0to 7 do 

14. Select j randomly, only one time from j=0 to 7 

15. Insert random cycles(50-n) 

16. x[j]=(Mask[j]  master_x[j]) 

17. end for 

18. Return x[j] 

Fig. 7. Proposed masking of state variables. 

 

 

V. RESULTS 
 

We evaluated the proposed countermeasure scheme by 

using formal evaluation standards, functional metrics, and 

performance metrics. 

 

A. Formal Evaluation Framework Management  
 

1) FIPS PUB 140-3 Draft 

Currently, under public review, the FIPS PUB 140-3 

Draft (2009) specifies the security requirements for cryp-

tographic modules [11]. Also published under ISO/IEC 

19790:2012, the standard defines four increasing levels of 

security that cover a range of applications and environments 

in which the crypto modules can be deployed. Although 

under this standard only the National Institute of Standards 

and Technology (NIST)-approved cryptographic algorithms 

are allowed, we apply the rest of the requirements to 

evaluate the Rabbit countermeasures. A side-channel cryp-

tanalysis on Rabbit falls under the category of non-invasive 

attacks that are governed by Security Levels 3 and 4. 

At Security Level 3, the cryptographic module shall 

protect the module’s critical security parameters (e.g., secret 

keys) against all of the applicable non-invasive attacks 

specified in Annex F of the abovementioned draft. 

Documentation is required to specify the mitigation 

techniques employed against these attacks, how the 

techniques work, and their effectiveness. Annexure F 

specifies the definitions of the non-invasive attack methods 

covered under this standard including correlation power 

analysis (CPA), differential power analysis (DPA), 

differential electro-magnetic analysis (DEMA), simple 

power analysis (SPA), simple electro-magnetic analysis 

(SEMA), and timing analysis (TA). Based on these 

definitions, the countermeasures proposed for Rabbit fulfill 

the requirements for Security Level 3. 

At Security Level 4, the module shall undergo testing and 

shall meet the requirements defined by the validation 

authority. Since we did not perform a higher-order attack to 

test the new countermeasures, our proposal does not meet 

the requirements for this security level. However, the basic 

countermeasures proposed by Bae et al. have been tested 

against first-order attacks, thereby permitting the verification 

of Security Level 4 up to the first-order attacks. 

 

2) Common Criteria 

The Common Criteria for Information Technology Security 

Evaluation (Common Criteria or CC) is an international 

standard for computer security certification [12]. Published 

as ISO/IEC 15408, it provides a framework for specifying 

security functional requirements (SFR) and security 

assurance requirements (SAR) by defining and using 

protection profiles (PPs) for a class of security devices and 

security targets (STs) to identify the security properties for a 

specific target of evaluation (TOE). Details of specific 

cryptographic algorithms and implementations are outside 

of the scope of CC. Further, the evaluation assurance levels 

(EALs) provide an increasing metric of the level of 

assurance obtained and range from EAL1 (Functionally 

Tested) to EAL7 (Formally Verified Design and Tested). 

The cryptographic module, security level “enhanced” 

PP written by the German government’s Federal Office 

for Information Security (BSI) describes the security 

requirements for cryptographic modules [13]. A security 

requirement for handling side-channel attacks is defined 

under the assurance family FPT_EMSEC:  

“This family defines requirements to mitigate intelligible 

emanations. The requirements address the level of resistance 

of the cryptographic module against side-channel attacks 

such as timing analysis, simple power analysis (SPA), 

differential power analysis (DPA), electromagnetic emanation 

analysis (EMEA), and template attacks. If the cryptographic 
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module applies masking, the requirements also address the 

level of resistance of the cryptographic module against a 

higher-order side-channel analysis.” 

Based on the definition above, the proposed coun-

termeasures fulfill the assurance family FPT_EMSEC 

requirements for a side-channel cryptanalysis. A general 

vulnerability assessment of possible covert channels (side-

channels) can also be investigated under class AVA, but the 

specification from BSI adequately covers the requirements 

in detail. 

 

3) SP 800-90A 

NIST SP 800-90A specifies the recommendation for 

random number generation using deterministic random bit 

generators (DRBGs) [14]. We evaluate the DRBGs used in 

our countermeasures according to this standard. For hash-

based DRBGs, the document recommends the use of an 

NIST-approved hash function such as the SHA family of 

secure hashes. The document states that the input to this 

function should primarily consist of entropy and other 

inputs in order to provide a security cushion. The minimum 

entropy required for instantiation and reseeding should have 

the same length as the desired security strength. Ideally, the 

input entropy should be equal to or greater than 3/2 of the 

desired security strength (in bits). Furthermore, the Recom-

mendation strongly advises the use of a personalization 

string. 

The proposed countermeasures employ the SHA-256 

function and takes as input 256 bits of entropy along with a 

64-bit timer and a 64-bit unique node identifier. As the 

required security strength of the mask is 256 bits, the 

recommended entropy input length is met. Therefore, on the 

basis of this Recommendation, the DRBGs used in the 

proposed countermeasures fulfill the security requirements 

specified. 

 

4) SP 800-108 

NIST SP 800-108 specifies the recommendation for key 

derivation using pseudo-random functions [15]. The 

document identifies a pseudo-random function as the basic 

building block of key derivation functions. The Recom-

mendation approves the use of the keyed hash message 

authentication code (HMAC) or the cipher-based message 

authentication code as the pseudo-random function. The key 

refreshment procedure defined in the proposed counter-

measure fulfills this basic requirement. The document 

further specifies a family of key derivation functions based 

on several modes that enable different parties to obtain the 

same keys from the derived keying material. Since key 

exchange is beyond the scope of this study, it is unnecessary 

to evaluate the key refreshment proposal against these 

techniques. 

 

B. Functional Metrics 
  

Earlier, we defined the research problem as how to 

securely implement the Rabbit stream cipher against a 

higher-order side-channel cryptanalysis while assuming that 

other defense mechanisms, such as intrusion detection 

systems cannot prevent or detect such attacks. We evaluate 

the achievement of the security design goals by using the 

functional metrics of resilience, resistance, scalability, and 

robustness. 

 

1) Resistance 

The first security design goal is to provide resistance 

against a side-channel cryptanalysis by limiting an 

adversary’s window of opportunity. This goal is achieved by 

employing a key refreshment scheme and limiting the sub-

key lifetime to l = 2
43

 encryptions. By limiting the number 

of encryptions performed under each key, a sufficient 

number of traces cannot be obtained to carry out the attack. 

 

2) Robustness 

The robustness of the countermeasures can be defined as 

the complexity for carrying out an attack. We increased this 

complexity by masking the master state, applying different 

masks for different variables, and randomizing the execution 

of critical operations. By using these techniques, we 

achieved the second security design goal. 

 

3) Resilience 

By applying the proposed countermeasures, even if an 

adversary manages to optimize the attack by reducing the 

number of traces needed, obtaining one key is not enough to 

gain access to the entire network. Different nodes and 

communication sessions use different sub-keys; therefore, 

the damage is limited to the compromised node. Moreover, 

the next session key cannot be derived from only the current 

session key, creating an additional time constraint. 

 

4) Scalability 

Being software-based, the countermeasures can be 

implemented with ease even across the existing systems. 

Furthermore, since only the key and IV setup phase is 

targeted, minimum cost is incurred as most these operations 

are not performed during normal encryption/decryption. 

Therefore, it can be concluded that this solution can be 

widely deployed without incurring a significant overhead 

cost as the network grows. 

 

C. Performance Metrics 
 

The overall costs are summarized in Table 2. The cou-

ntermeasures consume mostly more flash memory (ROM) 

with negligible overhead of SRAM and execution time. 
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Table 2. Performance cost of countermeasures on Tmote Sky 

 Basic cipher 
With proposed 

countermeasures 

Additional 

costs 

Flash memory 10,334 bytes 14,749 bytes 43% 

SRAM 5,449 bytes 5,618 bytes 3% 

Execution time 35 ms 36 ms 2% 

 

 

VI. DISCUSSION AND CONCLUSIONS 
 

A. Summary of Contributions 
 

In this work, we proposed and developed software-based 

countermeasures for the Rabbit stream cipher to defend 

against higher-order side-channel attacks. The counter-

measures build upon previous work by improving the mask 

generation, masking and hiding other components of the 

algorithm, and introducing a key refreshment scheme. We 

ported Rabbit to TinyOS as to the best of our knowledge, no 

one has written an implementation in nesC thus far. 

Through experiments using the Berkeley Telos B mote as 

the target platform, we evaluated the performance of the 

proposed scheme. Furthermore, we evaluated the security 

strength of the scheme by using FIPS PUB 140-3, the SP 

800 Series, and Common Criteria. The overall scheme 

fulfills the security design goals that we set of being 

resistant to higher-order attacks, resilient against a single-

node compromise, robust against determined adversaries, 

and scalable for deployment in wireless sensor networks. 

 

B. Concluding Remarks 

 

Ubiquitous computing applications are prone to a side-

channel cryptanalysis if the design and implementation of 

cryptosystems do not take this class of attack into 

consideration. Since the use of ubiquitous technologies is 

becoming more widespread, adversaries can be expected to 

emerge and take advantage of these vulnerabilities. In this 

work, however, we demonstrated that although the attacks 

can be feasibly carried out on unprotected systems, 

countermeasures can be feasibly developed and deployed on 

resource-constrained devices such as wireless sensors. 

Various methods can be used for increasing the com-

plexity of performing a side-channel cryptanalysis, thus 

making it an undesirable attack vector for the adversaries. 

We focused on software-based countermeasures that altered 

specific implementation issues and cryptosystem design 

considerations. Other potential methods include physical 

aspects such as improving the design of microcontroller 

boards that make it difficult to isolate a clear power trace 

from GND or VCC. The basic goal of a countermeasure is 

to introduce mechanisms that reduce the feasibility of 

carrying out an attack, be it preventing the capture of clear 

power traces or hiding meaningful information in the power 

traces. 

 

C. Future Work 
 

To further assess the threat of a side-channel cryp-

tanalysis against Rabbit, we recommend that future work be 

focused on testing higher-order attacks against the proposed 

countermeasure scheme and on performing attacks on real-

world cryptosystems, such as CyaSSL or SSH. 
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