DOI QR코드

DOI QR Code

GIS를 이용한 암반사면 파괴분석과 산사태 위험도

Rock Slope Failure Analysis and Landslide Risk Map by Using GIS

  • 권혜진 (한국광물자원공사 자원개발본부) ;
  • 김교원 (경북대학교 지질학과)
  • Kwon, Hye-Jin (Resources development Division, Korea Resources Corporation) ;
  • Kim, Gyo-Won (Dept. of Geology, Kyungpook National Univ.)
  • 투고 : 2014.09.29
  • 심사 : 2014.12.03
  • 발행 : 2014.12.31

초록

본 연구에서는 지리산 북쪽의 과거 산사태 발생영역에서 조사된 절리특성과 GIS를 이용하여 추출한 지형특성을 근거하여 연구지역에서 예상되는 암반사면 파괴유형을 분석하였다. 또 해발고도, 사면방향, 사면경사, 음영도, 곡률, 하천 이격거리 등 6개의 지형특성 인자의 빈도비를 중첩하여 산사태 예측도를 작성하였으며, 산사태 예측도와 도로 및 주거지와 같은 지역의 인문적인 인자를 고려한 산사태 피해도를 조합하여 최종적으로 연구지역의 산사태 위험도를 작성하였다. 연구지역에서 발생한 산사태의 지형적 특성을 분석한 결과, 해발고도 330~710m에서 88%, 사면방향 동남-남-남서 방향($90{\sim}270^{\circ}$)에서 77.7%, 사면경사 $10{\sim}40^{\circ}$에서 93.39%, 음영도 등급3~7에서 82.78%, 곡률특성 -5~+5에서 86.28%, 하천 이격거리 400m 이내에서 82.92%가 발생하였다. 산사태가 발생한 영역의 75%는 산사태 위험도에서 위험 등급이 '높음' 이상인 지역이어서 위험 예측에 대한 신뢰성이 확인되었으며, 연구지역의 13.27%는 산사태 위험에 노출된 것으로 분석되었다.

In this study, types of rock slope failure are analyzed by considering both joint characteristics investigated on previous landslide regions located at northern part of Mt. Jiri and geographic features of natural slopes deduced from GIS. The landslide prediction map was produced by superposing the frequency ratio layers for the six geographic features including elevation, slope aspect, slope angle, shaded relief, curvature and stream distance, and then the landslide risk map was deduced by combination of the prediction map and the damage map obtained by taking account of humanity factors such as roads and buildings in the study area. According to analysis on geographic features for previous landslide regions, the landslides occurred as following rate: 88% at 330~710 m in elevation, 77.7% at $90{\sim}270^{\circ}$ in slope aspect, 93.9% at $10{\sim}40^{\circ}$ in slope angle, 82.78% at grade3~7 in shaded relief, 86.28% at -5~+5 in curvature, and 82.92% within 400m in stream distance. Approximately 75% of the landslide regions belongs to the region of 'high' or 'very high' grade in the prediction map, and 13.27% of the study area is exposed to 'high risk' of landslide.

키워드

참고문헌

  1. Kim, K. S., Song, Y. S., Chae, B. G., Cho, Y. C. and Lee, C. O. (2007), Geometric Characteristics of Landslides on Natural Terrain according to the Geological Condition, The Journal of Engineering Geology, Vol.17, No.1, pp.75-87.
  2. Kim, W. Y., Lee, S. R., Kim, K. S. and Chae, B. G. (1998), Landslide Types and Susceptibilities Related to Geomorphic Characteristics, The Journal of Engineering Geology, Vol.8, No.2, pp.115-130.
  3. Kim, W. Y. and Chae, B. G. (2009), Characteristics of Rainfall, Geology and Failure Geometry of the Landslide Areas on Natural Terrains, Korea, The Journal of Engineering Geology, Vol.19, No.3, pp.331-344.
  4. Son, J. W., Kim, K. T., Lee, C. H. and Choi C. U. (2009), Analysis of Landslide in Inje Region Using Aerial Photograph and GIS, Journal of the Korean Society for Geospatial Information System, Vol.17, No.2, pp.61-69.
  5. Yang, I. T., Chun, G. S. and Park, J. H. (2006), The Effect of Landslide Factor and Determination of Landslide Vulnerable Area Using GIS and AHP, Journal of the Korean Society for Geo-spatial Information System, Vol.14, No.1, pp.3-12.
  6. Lee, M. J., Lee, S. R. and Won, J. S. (2004a), Landslide susceptibility mapping and validation using the GIS and Bayesian probability model in Boeun, 2004 GIS/RS Conference on Geo-Spatial Information, pp.481-486.
  7. Lee, M. J., Lee, S. R. and Won, J. S. (2004b), Study on Landslide using GIS and Remote Sensing at the Kangneung Area(I) -Relationship Analysis between Landslide Location and Related Factors, Economic and Environmental Geology, Vol.37, No.4, pp.425-436.
  8. Lee, S. R., Chawe, U. C. and Chang, B. S. (2002), Development and Application of Landslide Analysis Technique Using Geological Structure, The Journal of GIS Association of Korea, Vol.10, No.2, pp.247-261.
  9. Lee, Y. J., Park, G. A. and Kim, S. J. (2006), Analysis of Landslide Hazard Area using Logistic Regression Analysis and AHP (Analytical Hierarchy Process) Approach, Journal of the Korean Society of Civil Engineers, Vol.26, No.5, pp.861-867.
  10. Lee, H. N. (2010), Landslide prediction based on GIS and hazard checklist for stone cultural assets-focus on Namsan area in Kyeong-ju, Master's thesis Kyungpook National University, pp.1-59.
  11. Lee, H. D. and Kim, G. W. (2011a), Landslide Prediction and Hazard for cultural assets using GIS, 2011NSDI Conference on Geo-Spatial Information, pp.63-64.
  12. Lee, H. D. and Kim, G. W. (2011b), Location Analysis of Bronze Age's Dwelling Site using GIS, 2011NSDI Conference on Geo-Spatial Information, pp.236-237.
  13. Lee, H. D. and Kim, G. W. (2012), Location Analysis and Distributional Forecast of Prehistoric Sites in Ulsan Region Using GIS, Journal of the Korean Association of Geographic Information Studies, Vol.15, No.3, pp.23-35. https://doi.org/10.11108/kagis.2012.15.3.023
  14. Jung, J. H. (2004), Prediction mapping for landslide occurrence using GIS and result comparison in Yongin-Ansung area, Master's thesis Kyungpook National University, pp.1-59.
  15. Cho, Y. C. and Jang, T. W. (2006), The Geometric Characteristics of Landslides and Joint Characteristics in Gangneung Area, The Journal of Engineering Geology, Vol.16, No.4, pp.437-453.
  16. Chae, B. G., Kim, W. Y., Cho, Y. C., Kim, K. S., Lee, C. O. and Choi, Y. S. (2004), Development of a Logistic Regression Model for Probabilistic Prediction of Debris Flow, The Journal of Engineering Geology, Vol.14, No.2, pp.211-222.
  17. Choi, J. C. and Paik, I. S. (2002), Study on Analysis for Factors Inducing the Whangryeong Mountain Landslide, The Journal of Engineering Geology, Vol.12, No.2, pp.137-150.
  18. Choi, J. K., Kim, K. D., Lee, S. R., KIm, I. S. and Won, J. S. (2007), Prediction of Ground Subsidence Hazard Area Using GIS and Probability Model near Abandoned Underground Coal Mine, Economic and Environmental Geology, Vol.40, No.3, pp.295-306.
  19. Angillieri, M. (2010), Application of frequency ratio and logistic regression to active rock glacier occurrence in the Andes of San Juan, Argentina, Geomorphology 114, pp.396-405. https://doi.org/10.1016/j.geomorph.2009.08.003
  20. Gokceoglu, C., H.Sonmez, M. Ercanoglu (2000), Discontinuity controlled probabilistic slope failure risk maps of the Altindag (settlement) region in Turkey, Engineering Geology 55, pp.277-296. https://doi.org/10.1016/S0013-7952(99)00083-6
  21. Lee, Saro, Ueechan Chwae, Kyungduck Min (2002), Landslide susceptibility mapping by correlation between topography and geological structure: the Janghung area, Korea, Geomorphology 46, pp.149-162. https://doi.org/10.1016/S0169-555X(02)00057-0
  22. Lee, Saro and Moung-Jin Lee (2006), Detecting landslide location using KOMPSAT1 and its application to landslide-susceptibility mapping at the Gangneung area, Korea, Advances in Space Research 38, pp.221-227.
  23. Melchiorre, C., E. Castellanos, M. Matteucci (2007), Analysis of sensitivity in artificial neural network models:application in landslide susceptibility zonation, Guantanamo Province, Geophysical Research Abstracts.
  24. Sturzenegger, M., M. Sartori, M. Jaboyedoff, D. Stead (2007), Regional deterministic characterization of fracture networks and its application to GIS-based rock fall risk assessment, Engineering Geology 94, pp.201-214. https://doi.org/10.1016/j.enggeo.2007.08.002
  25. Yilmaz, I. (2009), Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslide (Tokat-Turkey), Computers & Geosciences 35, pp.1125-1132. https://doi.org/10.1016/j.cageo.2008.08.007

피인용 문헌

  1. 샌드심이 존재하는 점토에 Rowe Cell를 이용한 일정변형률 압밀시험 vol.33, pp.5, 2014, https://doi.org/10.7843/kgs.2017.33.5.5
  2. 암반 비탈면의 인장균열 위치 선정에 관한 사례 연구 vol.37, pp.3, 2014, https://doi.org/10.7843/kgs.2021.37.3.5