DOI QR코드

DOI QR Code

Variability of Deflections for Reinforced Concrete Flat Plate

철근 콘크리트 플랫 플레이트 처짐의 변동성 평가

  • Kim, Min Sook (Department of Architectural Engineering, Kyung Hee University) ;
  • Jo, Eunsun (Department of Architectural Engineering, Kyung Hee University) ;
  • Lee, Young Hak (Department of Architectural Engineering, Kyung Hee University)
  • Received : 2014.11.07
  • Accepted : 2014.11.18
  • Published : 2014.12.31

Abstract

The deflection of reinforced concrete members can be highly variable, due to uncertainties in the characteristics of the concrete. However, current standards do not take this problem into account, instead recommending only the minimum thickness and maximum allowable deflections based on empirical data. This paper is aimed at evaluation deflection variabilities by applying a probabilistic analysis model to a finite element analysis model. To evaluate the variabilities of deflections, a Monte Carlo simulation, which incorporated the eight parameters related to concrete, reinforcement, member size, and tension stiffening. The results showed that lager spans were more sensitive to the deflection due to loads and that as the applied live loads were increases and the slab thickness were decreased, the deflection variability increased.

불확실성을 가지는 콘크리트의 특성으로 인해 철근 콘크리트 부재의 처짐에는 높은 변동성이 발생할 수 있다. 그러나 현행 설계규준은 이를 고려하지 않고 경험적인 데이터에 바탕을 두고 있으며, 부재의 최소 두께 또는 최대 허용 처짐만을 제시하고 있다. 본 논문에서는 철근 콘크리트 플랫 플레이트의 처짐 예측이 가능한 유한요소해석 모델에 확률해석 모델을 적용하여 철근 콘크리트 플랫 플레이트 처짐의 변동성을 평가하고자 하였다. 이를 위해 콘크리트, 철근, 부재치수, 인장강성에 관련된 8개 요소를 변수로 한 몬테카를로 시뮬레이션을 수행하였다. 해석결과, 스팬의 크기가 증가할수록 하중으로 인한 처짐에 더 민감하게 반응하는 것으로 나타났으며, 재하되는 활하중의 크기가 클수록, 슬래브의 두께가 작을수록 처짐의 변동성이 큰 것으로 나타났다.

Keywords

References

  1. ACI Committee 318-11 (2011) Building Code Requirements for Reinforced Concrete and Commentary (ACI 318-11), American Concrete Institute, Farmington Hills, p.115.
  2. Choi, B.S., Scanlon, A., Johnson, P.A. (2004) Momte Carlo Simulation of Immediate and Time-Dependent Deflections of Reinforced Concrete Beams and Slabs, ACI Struct. J., 101, pp.633-641.
  3. Collins, M.P., Porasa, A. (1989) Shear Strength of High Strength Concrete, Bulletin D' Information Design Aspects of High Strength Concrete, CEB 193, pp.77-83.
  4. Gardner, N.J. (2011) Span/Thickness Limits for Deflection Control, ACI Struct. J., 108, pp.453-460.
  5. Graham, C.J., Scanlon, A. (1985) Deflection of Concrete Slabs Under Construction Loading, ACI Struct. J., 86, pp.167-184.
  6. Hinton, E., Owen, D.R.J. (1984) Finite Element Software for Plate and Shells, Pineridge Press, U.K.
  7. Kim, M.S., Kim, H., Ahn, N.S., Lee, Y.H. (2011) Deflection Analysis of Reinforced Concrete Flat Plates Considering Tension Stiffening, AIK Struct. J., 276, pp.105-112.
  8. Korea Concrete Institute (2012) KCI Concrete Structure Design Code 2011, Seoul, p.66.
  9. Lee, Y.H. (2004) Serviceability Criteria of Reinforced Concrete Floor Members, PhD thesis, Dept. of Civ. and Envir. Engrg., The Pennsylvania State University, USA.
  10. Lee, Y.H., Choi, J.H. (2007) Comparison of Minimum Thickness Provisions for One-way Slabs in Building Codes and Standards, AIK Struct. J., 227, pp.65-72.
  11. Mirza, S.A., Hatzinikolas, M., MacGregor, J.G. (1979) Statistical Descriptions of the Strength of Concrete, J. Struct. Div., ASCE, 105, pp.1021-1037.
  12. Scanlon, A., Lee, Y.H. (2006) Unified Span-to-Depth Ratio Equation for Nonprestressed Concrete Beams and Slabs, ACI Struct. J., 103, pp.142-148.
  13. Thorenfeldt, E., Tomaszewicz, A., Jensen, J.J. (1987) Mechanical Properties of High Strength Concrete and Application n Design, Proceedings of the Symposium Utilization of High Strength Concrete, Norway, Tapir Trondheim.