DOI QR코드

DOI QR Code

Characteristics of the Ceramic Filter with the Control of Particle Size and Graphite Additive for the Hazardous Particle and Gas Removal

입도와 흑연 첨가제에 따른 유해 입자 및 가스 동시제거용 세라믹필터 특성평가

  • Received : 2014.11.04
  • Accepted : 2014.12.02
  • Published : 2014.12.28

Abstract

In this study, the porous ceramic filter was developed to be able to remove both dust and hazardous gas contained in fuel gas at high temperature. The porous ceramic filters were fabricated and used as a catalyst support. And the effects have been investigated such as the mean particle size, organic content and addition of foaming agent on the porosity, compressive strength and pressure drop of ceramic filters. With the increase of mean powder size and the organic content for the cordierite filter, the porosity was increased, but the compressive strength and pressure drop were decreased. From the results of the research, the optimum condition for the fabrication of ceramic filters could be acquired and they had the porosity of 58%, the compressive strength of 13.4 MPa and the pressure drop of 250 Pa. It was expected that this ceramic filter was able to be applied to the glass melting furnace, combustor, and dust/toxic gas removal filter.

Keywords

References

  1. I. E. Wachs, G. Deo and B. M. Weckhuysen: J. Catal., 161 (1996) 221.
  2. X. Cheng and X. T. Bi: Particuology, 16 (2014) 1. https://doi.org/10.1016/j.partic.2014.01.006
  3. V. I. Parvulescu, P. Grange and B. Delmon: Catal. Today, 46 (1998) 233. https://doi.org/10.1016/S0920-5861(98)00399-X
  4. J. D. Chung: Environ. Eng. Res., 2 (1997) 33.
  5. E. C. Hammel, O. L.-R. Ighodaro and O. I. Okoli: Ceram. Int., 40 (2014) 15351. https://doi.org/10.1016/j.ceramint.2014.06.095
  6. G. Saracco: Conf. Proc. High Temperature Gas Cleaning, II (1999) 627.
  7. M. Fuji, Y. Shiroki, R. L. Menchavez, H. Takegami, M. Takahashi, H. Suzuki, S. Izuhara and T. Yokoyama: Powder Technol., 172 (2007) 57. https://doi.org/10.1016/j.powtec.2006.10.029
  8. R. M. Heck and R. J. Farrauto: Catalytic Air Pollution Control: Commercial Technology, Van Nostrand Reinhold, ITP, New York (1995) 161.
  9. S. Ito, T. Tanaka and S. Kawamura: Powder Technol., 100 (1998) 32. https://doi.org/10.1016/S0032-5910(98)00049-7
  10. L. Montanaro: Ceram. Int., 25 (1999) 437. https://doi.org/10.1016/S0272-8842(98)00051-0
  11. B. B. Kerezsi, A. G. Kotousov and J. W. H. Price: Int. J. Pres. Ves. Pip., 77 (2000) 425. https://doi.org/10.1016/S0308-0161(00)00025-9
  12. A. Cybulski and J. A. Moulijn: Structure Catalysis and Reactors, Andrzej Cybulski (Ed.), Marcel Dekker, Inc., New York (1998) 541.
  13. G. A. Merkel and M. J. Murtagh: USA, USP 5258150 (1993).
  14. D. L. Guile: USA, USP 5183608 (1993).
  15. J. Yang: J. Korean Ceram. Soc., 35 (1998) 399 (Korean).
  16. E. Ercenk and S. Yilmaz: Acta Phys. Pol. A, 125 (2014) 629. https://doi.org/10.12693/APhysPolA.125.629
  17. C.-B. Lim, D.-H. Yeo, H.-S. Shin and Y.-S. Cho: J. Korean Ceram. Soc., 48 (2011) 604 (Korean). https://doi.org/10.4191/kcers.2011.48.6.604
  18. S. K. Grannel and J. P. K. Seville: Conf. Proc. High Temperature Gas Cleaning, II (1998) 96.