DOI QR코드

DOI QR Code

실리카 코어 금 위성입자의 합성 및 표면 증강 라만 산란을 기반으로 한 센서로의 응용

Synthesis of Silica-Core Gold-Satellite Nanoparticles and Their Surface-enhanced Raman Scattering Based Sensing Application

  • 최현지 (한국기계연구원 부설 재료연구소 분말/세라믹연구본부) ;
  • 김영국 (한국기계연구원 부설 재료연구소 분말/세라믹연구본부) ;
  • 윤석영 (부산대학교 재료공학과) ;
  • 백연경 (한국기계연구원 부설 재료연구소 분말/세라믹연구본부)
  • Choi, Hyun Ji (Powder&Ceramics Division, Korea Institute of Materials Science) ;
  • Kim, Young-Kuk (Powder&Ceramics Division, Korea Institute of Materials Science) ;
  • Yoon, Seok-Young (Department of Material Engineering, Pusan National University) ;
  • Baek, Youn-Kyoung (Powder&Ceramics Division, Korea Institute of Materials Science)
  • 투고 : 2014.10.28
  • 심사 : 2014.12.11
  • 발행 : 2014.12.28

초록

In this study, we synthesize silica-core gold-satellite nanoparticles (SGNPs) for the surface-enhanced Raman scattering (SERS) based sensing applications. They consist of gold satellite nanoparticles (AuNPs) fixed on the silica core nanoparticles, which sizes of AuNPs can be tunned by varying the amount of reactants (growth solution and reducing agent). Their surface plasmon resonance (SPR) properties were characterized by using UV-vis spectroscopy, showing that the growth of AuNPs on silica cores leads to the light absorption in the longer wavelength region. Furthermore, the size increase of AuNPs exhibited the dramatic change in SERS activity due to the formation of hot spots. The optimized SGNPs showing enhancement factor ${\sim}3.8{\times}10^6$ exhibited a detection limit of rhodamine 6G (R6G) as low as $10^{-8}M$. These findings suggest the importance of size control of SGNPs and their SPR properties to develop highly efficient SERS sensors.

키워드

참고문헌

  1. A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck and J. B. Neaton: Phys. Rev. Lett., 106 (2011) 083003. https://doi.org/10.1103/PhysRevLett.106.083003
  2. X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong and M. S. Dresselhaus: Nano Lett., 14 (2014) 3033. https://doi.org/10.1021/nl404610c
  3. S. Lal, S. Link and N. J. Halas: Nat. Photon., 1 (2007) 641. https://doi.org/10.1038/nphoton.2007.223
  4. D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam and D. Suh: Nat. Mater., 9 (2010) 60. https://doi.org/10.1038/nmat2596
  5. K. A. Stoerzinger, J. Y. Lin and T. W. Odom: Chem. Sci., 2 (2011) 1435. https://doi.org/10.1039/c1sc00125f
  6. B. Yan, A. Thubagere, R. Premasiri,L. D. Ziegler, L. D. Negro and B. M. Reinhard: ACS Nano, 3 (2009) 1190. https://doi.org/10.1021/nn800836f
  7. T. Pham, J. B. Jackson, H. J. Halas and T. R. Lee: Langmuir, 18 (2002) 4915. https://doi.org/10.1021/la015561y
  8. J. Tharion, J. Satija and S. Mukherji: RSC Adv., 4 (2014) 3984. https://doi.org/10.1039/C3RA45815F
  9. S. J. Oldenburg, R. D. Averitt, S. L. Westcott and N. J. Halas: Chem. Phys. Lett., 288 (1998) 243. https://doi.org/10.1016/S0009-2614(98)00277-2
  10. K. T. Carron and L. G. Hurley: J. Phys. Chem., 95 (1991) 9979. https://doi.org/10.1021/j100177a068
  11. B. Ren, G. Picardi, B. Pettinger, R. Schuster and G. Ertl: Angew. Chem. Int. Ed., 44 (2005) 139. https://doi.org/10.1002/anie.200460656
  12. Y. Xia and N. J. Halas: MRS Bulletin, 30 (2005) 338. https://doi.org/10.1557/mrs2005.96
  13. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes and S. H. Oh: Nano Lett., 10 (2010) 2231. https://doi.org/10.1021/nl1012085