DOI QR코드

DOI QR Code

Hydrogen Reduction Behavior of Oxide Scale in Water-atomized Iron Powder

수분사 Fe 분말의 산화물 및 이의 수소가스 환원거동

  • Shin, Hea-Min (Department of Nanomaterials Engineering, Chungnam National University) ;
  • Baik, Kyeong-Ho (Department of Nanomaterials Engineering, Chungnam National University)
  • 신해민 (충남대학교 나노소재공학과) ;
  • 백경호 (충남대학교 나노소재공학과)
  • Received : 2014.10.08
  • Accepted : 2014.12.01
  • Published : 2014.12.28

Abstract

In this study, the reduction kinetics and behaviors of oxides in the water-atomized iron powder have been evaluated as a function of temperature ranging $850-1000^{\circ}C$ in hydrogen environment, and compared to the reduction behaviors of individual iron oxides including $Fe_2O_3$, $Fe_3O_4$ and FeO. The water-atomized iron powder contained a significant amount of iron oxides, mainly $Fe_3O_4$ and FeO, which were formed as a partially-continuous surface layer and an inner inclusion. During hydrogen reduction, a significant weight loss in the iron powder occurred in the initial stage of 10 min by the reduction of surface oxides, and then further reduction underwent slowly with increasing time. A higher temperature in the hydrogen reduction promoted a high purity of iron powder, but no significant change in the reduction occurred above $950^{\circ}C$. Sequence reduction process by an alternating environment of hydrogen and inert gases effectively removed the oxide scale in the iron powder, which lowered reduction temperature and/or shortened reduction time.

Keywords

References

  1. W. B. James: Int. J. Powder Metall., 30 (1994) 157.
  2. A. R. Kannan, K. S. Pandey and S. Shanmugam: J. Mater. Proc. Technol., 203 (2008) 542. https://doi.org/10.1016/j.jmatprotec.2007.10.068
  3. P. Suri, R. P. Koseski, and R. M. German: Mater. Sci. Eng. A, 402 (2005) 341. https://doi.org/10.1016/j.msea.2005.01.004
  4. R. M. German: Metall. Trans. A, 23 (1992) 1455. https://doi.org/10.1007/BF02647329
  5. R. M. German: Powder Metal., 47 (2004) 157. https://doi.org/10.1179/003258904225015563
  6. D. J. Lee, E. Y. Yoon, H. N. Kim, H. S. Kang, E. S. Lee and H. S. Kim: J. Korean Powder Metall. Inst., 18 (2011) 221. https://doi.org/10.4150/KPMI.2011.18.3.221
  7. R. M. German: Powder Metallurgy & Particulate Materials Processing, Princeton, NJ: Metal Powder Industries Federation (2005).
  8. L. V. Antony and R. G. Reddy: JOM, 55 (2003) 14.
  9. B. Bergquist: Powder Metall., 42 (1999) 331. https://doi.org/10.1179/003258999665684
  10. P. R. Brewin, P. I. Walker and P. D. Nurthen: Powder Metall., 29 (1986) 281. https://doi.org/10.1179/pom.1986.29.4.281
  11. E. Hryha, C. Gierl, L. Nyborg, H. Danninger and E. Dudrova: Appl. Surf. Sci., 256 (2010) 3946. https://doi.org/10.1016/j.apsusc.2010.01.055
  12. T. Tunberg and L. Nyborg: Powder Metall., 38 (1995) 120. https://doi.org/10.1179/pom.1995.38.2.120
  13. B. Bergquist: Powder Metall., 42 (1999) 331. https://doi.org/10.1179/003258999665684
  14. W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak and W. Maniukiewicz: Appl. Catalysis A: General, 326 (2007) 17. https://doi.org/10.1016/j.apcata.2007.03.021
  15. H. Y. Lin,Y. W. Chen and C. Li: Thermochimica Acta, 400 (2003) 61. https://doi.org/10.1016/S0040-6031(02)00478-1
  16. K. Piotrowski, K. Mondal, H. Lorethova, L. Stonawski, T. Szymanski and T. Wiltowski: Int. J. Hydro. Ener., 30 (2005) 1543. https://doi.org/10.1016/j.ijhydene.2004.10.013
  17. S. Hayashi, K. Mizumoto, S. Yoneda, Y. Kondo, H. Tanei and S. Ukai: Oxid. Met., 81 (2014) 357. https://doi.org/10.1007/s11085-013-9442-7
  18. W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak and W. Maniukiewicz: Appl. Catalysis A: General, 326 (2007) 17. https://doi.org/10.1016/j.apcata.2007.03.021
  19. M. V. C. Sastri, R. P. Viswanath and B. Viswanathan: Int. J. Hydro. Ener., 12 (1982) 951.
  20. S. Jung and J. Lee: Mater. Trans., 50 (2009) 2270. https://doi.org/10.2320/matertrans.MRA2008472