DOI QR코드

DOI QR Code

Story-wise system identification of actual shear building using ambient vibration data and ARX model

  • Ikeda, Ayumi (Department of Architecture and Architectural Engineering, Kyoto University) ;
  • Fujita, Kohei (Department of Architecture and Architectural Engineering, Kyoto University) ;
  • Takewaki, Izuru (Department of Architecture and Architectural Engineering, Kyoto University)
  • Received : 2014.04.20
  • Accepted : 2014.05.07
  • Published : 2014.12.25

Abstract

A sophisticated story-wise stiffness identification method for a shear building structure is applied to the case where the shear building is subjected to an actual micro-tremor. While the building responses to earthquake ground motions are necessary in the previous method, it is shown that micro-tremors can be used for identification within the same framework. This enhances the extended usability and practicality of the previously proposed identification method. The difficulty arising in the limit manipulation at zero frequency in the previous method is overcome by introducing an ARX model. The weakness of small SN ratios in the low frequency range is avoided by using the ARX model together with filtering and introducing new constraints on the ARX parameters.

Keywords

References

  1. Adachi S. (2009), Fundamentals of System Identification, Tokyo Denki University Press (in Japanese).
  2. Agbabian, M.S, Masri, S.F., Miller, R.K. and Caughey, T.K. (1991), System identification approach to detection of structural changes, J. Engng. Mech., ASCE; 117(2): 370-390. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:2(370)
  3. Barroso, L.R. and Rodriguez, R. (2004), Damage detection utilizing the damage index method to a benchmark structure. J. Engng. Mech., ASCE; 130(2): 142-151. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:2(142)
  4. Beck, J.L. and Jennings, P.C. (1980), Structural identification using linear models and earthquake records, Earthquake Engng. Struct. Dyn.; 8: 145-160. https://doi.org/10.1002/eqe.4290080205
  5. Bernal, D. and Beck, J. (2004), Preface to the Special Issue on Phase I of the IASC- ASCE Structural Health Monitoring Benchmark, J. Engng. Mech., ASCE; 130(1): 1-2. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(1)
  6. Casciati, F. (ed.) (2002), Proceedings of 3rd World Conference on Structural Control. John Wiley & Sons:Como.
  7. Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W. (1996), Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review, Los Alamos National Laboratory Report LA-13070-MS.
  8. Fujino, Y., Nishitani, A. and Mita, A. (2010), Proceedings of 5th World Conference on Structural Control and Monitoring, (5WCSCM). Tokyo.
  9. Fujita, K., Ikeda, A., Shirono, M. and Takewaki, I. (2013), System identification of high-rise buildings using shear-bending model and ARX model: Experimental investigation, Proc. of ICEAS13 in ASEM13, September 8-12, Jeju, Korea, pp2803-2815.
  10. Ghanem, R. and Shinozuka, M. (1995), Structural-system identification I: Theory, J. Engng. Mech., ASCE; 121(2), 255-264. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:2(255)
  11. Hart, G.C. and Yao, J.T.P. (1977), System identification in structural dynamics, J. Engng. Mech. Div., ASCE; 103(EM6): 1089-1104.
  12. Hernandez-Garcia, M.R., Masri, S.F., Ghanem, R., Figueiredo, E. and Farrar, C.R. (2010), An experimental investigation of change detection in uncertain chain-like systems. J. Sound Vib.; 329(12), 2395-2409. https://doi.org/10.1016/j.jsv.2009.12.024
  13. Hernandez-Garcia, M., Masri, S.F., Ghanem, R., Figueiredo, E. and Farrar, R.A. (2010), A structural decomposition approach for detecting, locating, and quantifying nonlinearities in chain-like systems. Struct. Control Health Monitor., 17, 761-777. https://doi.org/10.1002/stc.396
  14. Hjelmstad, K.D, Banan, M.R and Banan, M.R. (1995), On building finite element models of structures from modal response, Earthq. Eng. Struct. Dyn., 24, 53-67. https://doi.org/10.1002/eqe.4290240105
  15. Hjelmstad K.D. (1996), On the uniqueness of modal parameter estimation, J. Sound Vib.; 192(2), 581-598. https://doi.org/10.1006/jsvi.1996.0205
  16. Hoshiya, M. and Saito, E. (1984), Structural identification by extended Kalman filter, J. Eng. Mech., ASCE; 110(12), 1757-1770. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:12(1757)
  17. Housner, G.W., Masri, S.F. and Chassiakos, A.G., (1994), Proceedings of 1st World Conference on Structural Control. IASC: Los Angeles, CA.
  18. Housner G.W., Bergman, L., Caughey, T., Chassiakos, A., Claus, R., Masri, S., Skelton, R., Soong, T., Spencer, B. and Yao, J. (1997), "Special issue, Structural control: past, present, and future", J. Eng. Mech., ASCE, 123(9): 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
  19. Ji, X., Fenves, G.L.; Kajiwara, K. and Nakashima, M. (2011), "Seismic damage detection of a full-scale shaking table test structure", J. Struct. Eng. ASCE, 137(1), 14-21. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000278
  20. Johnson E. and Smyth A. (2006), Proceedings of 4th World Conference on Structural Control and Monitoring, (4WCSCM). IASC: San Diego, CA.
  21. Johnson, E.A., Lam, H.F., Katafygiotis, L.S., Beck, J.L. (2004), Phase I IASC-ASCE Structural Health Monitoring Benchmark Problem using Simulated Data. ASCE J. Eng. Mech., 130(1), 3-15. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(3)
  22. Kobori, T., Inoue, Y., Seto, K., Iemura, H. and Nishitani, A. (1998), Proceedings of 2nd World Conference on Structural Control. John Wiley & Sons: Kyoto.
  23. Koh, C.G., See, L.M and Balendra, T. (1991), Estimation of structural parameters in time domain: a substructure approach, Earthq. Eng. Struct. Dyn.; 20: 787-801. https://doi.org/10.1002/eqe.4290200806
  24. Kozin, F. and Natke, H.G. (1986). System identification techniques, Struct. Safety, 3, 269-316. https://doi.org/10.1016/0167-4730(86)90006-8
  25. Kuwabara, M, Yoshitomi, S and Takewaki, I. (2013). A new approach to system identification and damage detection of high-rise buildings, Struct. Control Health Monitor., 20, 703-727. https://doi.org/10.1002/stc.1486
  26. Le, T.H. and Tamura, Y. (2009). Modal identification of ambient vibration structure using frequency domain decomposition and wavelet transform, Proceeding of the Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 2009, Taipei, Taiwan.
  27. Lus, H., Betti, R., Yu, J. and De Angelis, M. (2004), Investigation of a system identification methodology in the context of the ASCE benchmark problem, J. Eng. Mech., ASCE; 130(1), 71-84. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(71)
  28. Maeda, T., Yoshitomi, S. and Takewaki, I. (2011), Stiffness-damping identification of buildings using limited earthquake records and ARX model, J. Struct. Construction Eng., Architectural Inst. of Japan;666: 1415-1423 (in Japanese).
  29. Masri, S.F., Nakamura M., Chassiakos, A.G. and Caughey, T.K. (1996), A neural network approach to the detection of changes in structural parameters, J. Eng. Mech., ASCE; 122(4), 350-360. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:4(350)
  30. Mendel, J.M. (1995), Lessons in Estimation Theory for Signal Processing, Communications, and Control, 2nd Edition, Prentice Hall.
  31. Minami, Y., Yoshitomi, S. and Takewaki, I. (2013), System identification of super high-rise buildings using limited vibration data during the 2011 Tohoku (Japan) earthquake, Struct. Control Health Monitor., 20, 1317-1338.
  32. Nagarajaiah, S. and Basu, B. (2009), Output only modal identification and structural damage detection using time frequency & wavelet techniques, Earthq. Eng.Eng. Vib.; 8(4), 583-605. https://doi.org/10.1007/s11803-009-9120-6
  33. Safak, E. (1989), Adaptive Modeling, Identification, and control of dynamic structural systems. I: Theory, J. Eng. Mech., ASCE; 115(11), 2386-2405. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:11(2386)
  34. Shinozuka, M. and Ghanem, R. (1995), "Structural-system identification II: Experimental verification", J. Eng. Mech., ASCE; 121(2), 265-273. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:2(265)
  35. Takewaki, I. and Nakamura, M. (2000), "Stiffness-damping simultaneous identification using limited earthquake records", Earthq. Eng. Struct. Dyn., 29(8), 1219-1238. https://doi.org/10.1002/1096-9845(200008)29:8<1219::AID-EQE968>3.0.CO;2-X
  36. Takewaki, I. and Nakamura, M. (2005), "Stiffness-damping simultaneous identification under limited observation", J. Eng. Mech., ASCE; 131(10), 1027-1035. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:10(1027)
  37. Takewaki, I. and Nakamura, M. (2009), "Temporal variation of modal properties of a base-isolated building during an earthquake", J. Zhejiang University-SCIENCE A; 11(1), 1-8.
  38. Udwadia, F.E., Sharma, D.K and Shah, P.C. (1978), "Uniqueness of damping and stiffness distributions in the identification of soil and structural systems", J. Applied Mech., ASME; 45: 181-187. https://doi.org/10.1115/1.3424224
  39. Xing, Z. and Mita, A. (2012), "A substructure approach to local damage detection of shear structure", Struct. Control Health Monitor., 19(2), 309-318. https://doi.org/10.1002/stc.439
  40. Yao, J.T.P. and Natke, H.G. (1994), Damage detection and reliability evaluation of existing structures, Struct. Safety; 15: 3-16. https://doi.org/10.1016/0167-4730(94)90049-3
  41. Zhang D.Y. and Johnson, E.A. (2012), Substructure Identification for Shear Structures: Cross Power Spectral Density Method, Smart Mater. Struct., 21(5), 055006. https://doi.org/10.1088/0964-1726/21/5/055006
  42. Zhang D.Y. and Johnson, E.A. (2013a). Substructure identification for shear structures I: Substructure identification method, Struct. Control Health Monitor., 20(5), 804-820. https://doi.org/10.1002/stc.1497
  43. Zhang D.Y. and Johnson, E.A. (2013b), "Substructure identification for shear structures with nonstationary structural responses", J. Eng. Mech, ASCE, 139(12), 1769-1779. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000626

Cited by

  1. Discussion of “Novel Sensor Clustering–Based Approach for Simultaneous Detection of Stiffness and Mass Changes Using Output-Only Data” by Qipei Mei and Mustafa Gül vol.142, pp.1, 2016, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001419
  2. Improving substructure identification accuracy of shear structures using virtual control system vol.27, pp.2, 2018, https://doi.org/10.1088/1361-665X/aaa46f
  3. Direct Linear System Identification Method for Multistory Three-dimensional Building Structure with General Eccentricity vol.3, 2017, https://doi.org/10.3389/fbuil.2017.00017
  4. Closure to “Novel Sensor Clustering–Based Approach for Simultaneous Detection of Stiffness and Mass Changes Using Output-Only Data” by Qipei Mei and Mustafa Gül vol.142, pp.1, 2016, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001420
  5. STIFFNESS IDENTIFICATION OF BUILDING WITH UNKNOWN VIBRATION SOURCE USING BENDING-SHEAR MODEL AND ARX MODEL vol.80, pp.716, 2015, https://doi.org/10.3130/aijs.80.1559
  6. Advanced System Identification for High-Rise Building Using Shear-Bending Model vol.2, 2016, https://doi.org/10.3389/fbuil.2016.00029
  7. Frequency-Domain Physical-Parameter System Identification of Building Structures with Stiffness Eccentricity vol.3, 2017, https://doi.org/10.3389/fbuil.2017.00071
  8. Response Analysis and Auto-Regressive Exogenous Modeling of a Steel-Reinforced Concrete High-Rise Building during the 2011 Off the Pacific Coast of Tohoku Earthquake vol.3, 2017, https://doi.org/10.3389/fbuil.2017.00074
  9. Reliability of System Identification Technique in Super High-Rise Building vol.1, 2015, https://doi.org/10.3389/fbuil.2015.00011
  10. Influence of wind disturbance on smart stiffness identification of building structure using limited micro-tremor observation vol.56, pp.2, 2015, https://doi.org/10.12989/sem.2015.56.2.293
  11. Ambient vibration testing of existing buildings: Experimental, numerical and code provisions vol.10, pp.4, 2018, https://doi.org/10.1177/1687814018772718
  12. Stiffness and Damping Identification for Asymmetric Building Frame With In-plane Flexible Floors vol.5, pp.None, 2014, https://doi.org/10.3389/fbuil.2019.00103