DOI QR코드

DOI QR Code

Siberian Sturgeon Oocyte Extract Induces Epigenetic Modifications of Porcine Somatic Cells and Improves Developmental Competence of SCNT Embryos

  • Kim, So-Young (Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Kim, Tae-Suk (Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Park, Sang-Hoon (Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Lee, Mi-Ran (Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Eun, Hye-Ju (Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Baek, Sang-Ki (Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Ko, Yeoung-Gyu (Animal Genetic Resources Station, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Sung-Woo (Animal Genetic Resources Station, National Institute of Animal Science, Rural Development Administration) ;
  • Seong, Hwan-Hoo (Animal Genetic Resources Station, National Institute of Animal Science, Rural Development Administration) ;
  • Campbell, Keith H.S. (Animal Development and Biotechnology Group, Department of Animal Science, School of Biosciences, The University of Nottingham) ;
  • Lee, Joon-Hee (Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Gyeongsang National University)
  • Received : 2013.11.07
  • Accepted : 2013.11.29
  • Published : 2014.02.01

Abstract

Somatic cell nuclear transfer (SCNT) has generally demonstrated that a differentiated cell can convert into a undifferentiated or pluripotent state. In the SCNT experiment, nuclear reprogramming is induced by exposure of introduced donor nuclei to the recipient cytoplasm of matured oocytes. However, because the efficiency of SCNT still remains low, a combination of SCNT technique with the ex-ovo method may improve the normal development of SCNT embryos. Here we hypothesized that treatment of somatic cells with extracts prepared from the germinal vesicle (GV) stage Siberian sturgeon oocytes prior to their use as nuclear donor for SCNT would improve in vitro development. A reversible permeability protocol with $4{\mu}g/mL$ of digitonin for 2 min at $4^{\circ}C$ in order to deliver Siberian sturgeon oocyte extract (SOE) to porcine fetal fibroblasts (PFFs) was carried out. As results, the intensity of H3K9ac staining in PFFs following treatment of SOE for 7 h at $18^{\circ}C$ was significantly increased but the intensity of H3K9me3 staining in PFFs was significantly decreased as compared with the control (p<0.05). Additionally, the level of histone acetylation in SCNT embryos at the zygote stage was significantly increased when reconstructed using SOE-treated cells (p<0.05), similar to that of IVF embryos at the zygote stage. The number of apoptotic cells was significantly decreased and pluripotency markers (Nanog, Oct4 and Sox2) were highly expressed in the blastocyst stage of SCNT embryos reconstructed using SOE-treated cells as nuclear donor (p<0.05). And there was observed a better development to the blastocyst stage in the SOE-treated group (p<0.05). Our results suggested that pre-treatment of cells with SOE could improve epigenetic reprogramming and the quality of porcine SCNT embryos.

Keywords

References

  1. Adam, S. A., R. Sterne-Marr, and L. Gerace. 1992. Nuclear protein import using digitonin-permeabilized cells. Methods Enzymol. 219:97-110. https://doi.org/10.1016/0076-6879(92)19013-V
  2. Alberio, R., A. Johnson, R. Stick, and K. H. S. Campbell. 2005. Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm. Exp. Cell Res. 307:131-141. https://doi.org/10.1016/j.yexcr.2005.02.028
  3. Bernstein, B. E., T. S. Mikkelsen, X. Xie, M. Kamal, D. J. Huebert, J. Cuff, B. Fry, A. Meissner, M. Wernig, K. Plath, R. Jaenisch, A. Wagschal, R. Feil, S. L. Schreiber, and E. S. Lander. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315-326. https://doi.org/10.1016/j.cell.2006.02.041
  4. Bian, Y., R. Alberio, C. Allegrucci, K. H. S. Campbell, and A. Johnson. 2009. Epigenetic chromatin marks in somatic chromatin are remodeled to resemble pluripotent nuclei by amphibian oocyte extracts. Epigenetics 4:194-202. https://doi.org/10.4161/epi.4.3.8787
  5. Blau, H. M. and B. T. Blakely. 1999. Plasticity of cell fate: insights from heterokaryons. Semin. Cell. Dev. Biol. 10:267-272. https://doi.org/10.1006/scdb.1999.0311
  6. Campman, F. A. and J. P. Eenennaam. 2007. The egg polarization index or PI. University of FLORIDA IFAS extension 153:1-5.
  7. Geelen, M. J. 2005. The use of digitonin-permeabilized mammalian cells for measuring enzyme activities in the course of studies on lipid metabolism. Anal. Biochem. 347:1-9. https://doi.org/10.1016/j.ab.2005.03.032
  8. Hansis, C., G. Barreto, N. Maltry, and C. Niehrs. 2004. Nuclear reprogramming of human somatic cells by Xenopus egg extract requires BRG1. Curr. Biol. 14:1475-1480. https://doi.org/10.1016/j.cub.2004.08.031
  9. Hakelien, A. M., H. B. Landsverk, J. M. Robl, B. S. Skalhegg, and P. Collas. 2002. Reprogramming fibroblasts to express T-cell functions using cell extract. Nat. Biotechnol .20:460-466. https://doi.org/10.1038/nbt0502-460
  10. Hochedilinger, K. and R. Jaenisch. 2002. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415:1035-1038. https://doi.org/10.1038/nature718
  11. Jouneau, A. and J. P. Renard. 2003. Reprogramming in nuclear transfer. Curr. Opin. Genet. Dev. 13:486-491. https://doi.org/10.1016/j.gde.2003.08.007
  12. Konrad, H. and J. Rudolf. 2006. Nuclear reprogramming and pluripotency. Nature 441:1061-1067. https://doi.org/10.1038/nature04955
  13. Landsverk, H. B., A. M. Hakelien, T. Küntziger, J. M. Robl, B. S. Skalhegg, and P. Collas. 2002. Reprogrammed gene expression in a somatic cell-free extract. EMBO Rep. 3:384-389. https://doi.org/10.1093/embo-reports/kvf064
  14. Lee, J. H. and K. H. S. Campbell. 2006. Effects of enucleation and caffeine on Maturation-Promoting Factor (MPF) and Mitogen- Activated Protein Kinase (MAPK) activities in ovine oocytes used as recipient cytoplasts for nuclear transfer. Biol. Reprod. 74:691-698. https://doi.org/10.1095/biolreprod.105.043885
  15. Maherali, N. and K. Hochedlinger. 2008. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 3:595-605. https://doi.org/10.1016/j.stem.2008.11.008
  16. Martin, C., N. Beaujean, V. Brochard, C. Audouard, D. Zink, and P. Debey. 2006. Genome restructuring in mouse embryos during reprogramming and early development. Dev. Biol. 292:317-332. https://doi.org/10.1016/j.ydbio.2006.01.009
  17. Meshorer, E., D. Yellajoshula, E. George, P. J. Scambler, D. T. Brown, and T. Misteli. 2006. Hyperdynamic plasticity of chomatin proteins in pluripotent embryonic stem cells. Dev. Cell 10:105-116. https://doi.org/10.1016/j.devcel.2005.10.017
  18. Miyamoto, K., T. Furusawa, M. Ohnuki, S. Goel, T. Tokunuga, N. Minami, M. Yamada, K. Ohsumi, and H. Imai. 2007. Reprogramming events of mammalian somatic cells induced by Xenopus laevis egg extracts. Mol. Reprod. Dev. 74:1268-1277. https://doi.org/10.1002/mrd.20691
  19. Miyamoto, K., T. Yamashita, T. Tsukiyama, N. Kitamura, N. Minami, M. Yamada, and H. Imai. 2008. Reversible membrane permeabilization of mammalian cells treated with digitonin and its use for inducing nuclear reprogramming by Xenopus egg extracts. Cloning Stem Cells 10:535-542. https://doi.org/10.1089/clo.2008.0020
  20. Morgan, H. D., F. Santos, K. Green, W. Dean, and W. Reik. 2005. Epigenetic reprogramming in mammals. Hum. Mol. Genet. 14: R47-R58. https://doi.org/10.1093/hmg/ddi114
  21. Niwa, H. 2007. How is pluripotency determined and maintained? Development 134:635-646. https://doi.org/10.1242/dev.02787
  22. Rathbone, A. J., P. A. Fisher, J. H. Lee, J. Craigon, and K. H. S. Campbell. 2010. Reprogramming of ovine somatic cells with Xenopus laevis oocyte extract prior to SCNT improves live birth rate. Cell. Reprogram. 12:609-616. https://doi.org/10.1089/cell.2010.0015
  23. Rideout, W. M., K. Eggan, and R. Jaenisch. 2001. Nuclear cloning and epigenetic reprogramming of the genome. Science 293: 1093-1098. https://doi.org/10.1126/science.1063206
  24. Silva, J., I. Chambers, S. Pollard, and A. Smith. 2006. Nanog promotes transfer of pluripotency after cell fusion. Nature 441: 997-1001. https://doi.org/10.1038/nature04914
  25. Tada, M., T. Tada, L. Lefebvre, S. C. Barton, and M. A. Surani. 1997. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 16:6510-6520. https://doi.org/10.1093/emboj/16.21.6510
  26. Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861-872. https://doi.org/10.1016/j.cell.2007.11.019
  27. Takahashi, K. and S. Yamanaka. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultured by defined factor. Cell 126: 663-676. https://doi.org/10.1016/j.cell.2006.07.024
  28. Tang, S., Y. Wang, D. Zhang, Y. Gao, Y. Ma, B. Yin, J. Sun, J. Liu, and Y. Zhang. 2009. Reprogramming donor cells with oocyte extracts improves in vitro development of nuclear transfer embryos. Ani. Reprod. Sci. 115:1-9. https://doi.org/10.1016/j.anireprosci.2008.10.018
  29. Taranger, C. K., A. Noer, A. L. Sorensen, A. M. Hakelien, A. C. Boquest, and P. Collas. 2005. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol. Biol. Cell 16:5719-5735. https://doi.org/10.1091/mbc.E05-06-0572
  30. Wakayama, T., A. C. F. Perry, M. Zuccotti, K. R. Johnson, and R. Yanagimachi. 1998. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369-373. https://doi.org/10.1038/28615
  31. Walev, I., S. C. Bhakdi, F. Hofmann, N. Djonder, A. Valeva, K. Aktories, and S. Bhakdi. 2001. Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O. Proc. Natl. Acad. Sci. USA 98:3185-3190. https://doi.org/10.1073/pnas.051429498
  32. Wilmut, I., A. E. Schnieke, J. McWhir, A. J. Kindm, and K. H. S. Campbell. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385:810-813. https://doi.org/10.1038/385810a0
  33. Ye, J., A. P. F. Flint, K. H. S. Campbell, and M. R. Luck. 2002. Synchronization of porcine oocyte meiosis using cycloheximide and its application to the study of regulation by cumulus cells. Reprod. Fertil. Dev. 14:433-442. https://doi.org/10.1071/RD02037

Cited by

  1. Adverse Effects of High Concentrations of Fluoride on Characteristics of the Ovary and Mature Oocyte of Mouse vol.10, pp.6, 2015, https://doi.org/10.1371/journal.pone.0129594
  2. Epigenetic states of donor cells significantly affect the development of somatic cell nuclear transfer (SCNT) embryos in pigs vol.85, pp.1, 2014, https://doi.org/10.1002/mrd.22935