

J Inf Process Syst, Vol.10, No.4, pp.628~645, December 2014, V, Vol.10, No.4, pp.00~00, December 2014
http://dx.doi.org/10.3745/JIPS.03.0020

628 Copyright 2014 KIPS

Cost-Effective Replication Schemes for Query Load
Balancing in DHT-Based Peer-to-Peer File Searches

Qi Cao* and Satoshi Fujita*

Abstract In past few years, distributed hash table (DHT)-based P2P systems have
been proven to be a promising way to manage decentralized index information and
provide efficient lookup services. However, the skewness o
regarding keywords contained in a multi-keyword query causes a query load imbalance
that combines both routing and response load. This imbalance means long file retrieval
latency that negatively influences the overall system performance. Although index
replication has a great potential for alleviating this problem, existing schemes did not
explicitly address it or incurred high cost. To overcome this issue, we propose, in this
paper, an integrated solution that consists of three replication schemes to alleviate
query load imbalance while minimizing the cost. The first scheme is an active index
replication that is used in order to decrease routing load in the system and to distribute
response load of an index among peers that store replicas of the index. The second
scheme is a proactive pointer replication that places location information of each index
to a predetermined number of peers for reducing maintenance cost between the index
and its replicas. The third scheme is a passive index replication that guarantees the
maximum query load of peers. The result of simulations indicates that the proposed
schemes can help alleviate the query load imbalance of peers. Moreover, it was found
by comparison that our schemes are more cost-effective on placing replicas than
PCache and EAD.

Keywords DHT, Load Balancing, Load Reduction, Multi-Keyword Search, Replication

1. INTRODUCTION
Peer-to-Peer (P2P) file sharing systems have been widely used in recent years. In P2P systems

(we use P2P to denote P2P file sharing in the rest of this paper), an index
is a common and useful data structure for object (i.e., file) retrieval. Mainly, an index is a set
of entries associated to a given keyword, and an entry is a triple table that contains keyword,
object metadata and object location. Retrieval of indices can be managed through a centralized
or distributed means. In hybrid P2P systems, such as Napster and eDonkey, index retrieval is
realized by sending queries to a dedicated server (or a cluster of dedicated servers) that
maintains a set of indices in a centralized manner. On the other hand, in pure P2P, index retrieval is
realized by participating peers in a distributed manner. According to the control policy of
indexing, pure P2P can be again classified into unstructured P2P and structured P2P. In unstructured
P2P, such as Gnutella and FreeNet, indices will be retrieved by time-to-live (TTL) based

Manuscript received October 22, 2013; first revision January 14, 2014; accepted March 3, 2014.
Corresponding Author: Qi Cao (caoqi@se.hiroshima-u.ac.jp)
* Department of Information Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima,

739-8527, Hiroshima, Japan. ({caoqi, fujita}@se.hiroshima-u.ac.jp)

ISSN 1976-913X (Print)
ISSN 2092-805X (Electronic)

 Qi Cao and Satoshi Fujita

629

controlled flooding over peers in the systems, which severely limits the scalability of the overall
system.

Alternatively, most of structured P2Ps adopt a distributed hash table (DHT) to overcome the
low scalability of flooding-based indexing schemes. In such systems, each object is typically
attached to several keys, and each key is mapped to a unique point in a hash space. The hash
space is partitioned among participating peers, and each peer is responsible for storing all of the
indices of objects whose keys are mapped to a portion of the hash space associated to the peer.
Each peer can efficiently locate a peer that is responsible for a given key by identifying a point
corresponding to the key in the hash space and by routing a query message towards the
identified point. DHTs are often referenced by their geometry of hash space, such as a ring [1],
torus [2], and some hybrid [3,4].

To retrieve indices, multi-keyword search is a quite common query type, and it generally
utilizes an intersection or union operation of indices that are obtained by single keyword (or key)
search. More concretely, in a DHT-based P2P system, by giving a multi-keyword query initiated
by a user, it will be parsed into multiple sub-queries, each of which corresponds to a keyword
contained in the query. Those sub-queries are sent to other peers by using the DHT. The search
result received by the user is an intersection or union of the indices obtained by each sub-query.
In this process, since the preference of users concerned with keywords contained in queries
generally follows a power- 5], an access concentration of
queries would probably happen at two kinds of peers. For example, 1) home peers that hold
indices associated with popular keywords and 2) intermediate peers who are in the intersection
of multiple routing paths towards hot home peers. In the system, those two kinds of peers
easily become a bottleneck in query processing. If there were several of these types of overloaded
peers in the routing path for a given query, it would incur long index retrieval latency and
consequently, would negatively influence the overall performance of object retrieval.

Index replication has a great potential for alleviating this issue. However, existing schemes
have not explicitly addressed it or they incur high costs [6-8]. The management cost of index
replicas (i.e., cost of copying and keeping index replicas) is very small. For example, suppose
that an entry is approximately 500 B, an index that consists of 200 entries would be approximately
100 kB. On the other hand, the maintenance cost of index replicas may be high if we want to
guarantee the consistency between an index and its replicas, since the index entries associated
with a keyword would be continuously inserted or deleted. The degree of overhead for guaranteeing
index consistency may be varied according to the need of real systems, and it is an open problem
in this paper. Generally, the cost of index replication is evaluated through the number of replicas
rather than the size of replicas (i.e., the maintenance cost is assumed to be far larger than the
management cost). Instead of index replication, using a pointer would be an effective approach
to avoiding the consistency issue of index replication, where a pointer is a pair of key (i.e.,
hashed keywords) and index locations. In other words, the pointer is a shortcut between a
search key and a home peer of the keyword.

Replica placement has a significant impact on minimizing the replication cost. The replica
placement problem that focuses on optimizing one kind of resource in P2P systems is found to
be NP-complete [9] (i.e., the optimal placement of replicas will always lead to exponential time
algorithms). Alternatively, a lot of heuristic algorithms have been proposed to give approximate
solutions for the problem. The majority of existing replication methods place replicas in the
query paths to intermediate peers between requesters and home peers, which is referred to as

Cost-Effective Replication Schemes for Query Load Balancing in DHT-Based Peer-to-Peer File Searches

630

path-based replication or probabilistic replication. PCache [7] and EAD [8] are two prominent
probabilistic replica placement schemes. On the other hand, deterministic replication [10] has
also been proposed, based on DHTs. In deterministic replication, each point in a hash space is
associated with a set of other identified points. For example, if point i is associated with
identified point r, then any (key, value) pair with point i should be stored at the peers responsible
for points i and r. To realize the benefits of these approaches for minimizing the replication cost,
it is necessary to instantiate particular schemes for different classes of DHTs, utilizing their
routing characteristics.

In this paper, we focus on a class of tree-based routing DHTs (See Section 3.1 for the details).
We will propose an integrated solution consisting of three replication schemes to alleviate the
load imbalance of peers, while minimizing the cost, for these types of DHT-based P2P systems.
The first scheme tries to bind the maximum response load received by each index to have it not
exceeding a threshold µ. Under such constraint, an index with a popular keyword (i.e., popular
index) will make more replicas. It does so to allow the routing load for the popular index to be
highly reduced and so that the response load received by its home peer and replica peers can
share the popular index. The second scheme places a predetermined number of pointers for each
index with the aim of decreasing the number of index replicas generated by the first scheme. The
third scheme controls the maximum query load of peers by operations of pushing or pulling
index replicas. It does so in order to eliminate a bottleneck situation in the query processing in
the system. The result of simulations indicates that all the proposed schemes can work in
coordination in alleviating the query load imbalance of peers. Moreover, it was proved by
comparison that our schemes are more cost-effective in placing replicas of index to other peers
in the system than PCache and EAD.

The remainder of this paper is organized as follows: Section 2 outlines work related to this
topic. Section 3 describes the details of the system model. Section 4 proposes three replication
based query load-balancing schemes. The result of the evaluation is given in Section 5. Finally,
Section 6 concludes the paper and presents future work that should be carried out.

2. RELATED WORK
In general, load balancing is a key technology for avoiding a peer failing in performing its

tasks in different kinds of distributed systems. Load balancing in P2Ps has been researched more
than ten years since the appearance of P2P systems. Load balancing can be achieved by shedding
load from heavily loaded peers (i.e., source peer) to lightly loaded peers (i.e., destination peer)
via task migration or task replication. Unlike replication, migration implies that once task has
been moved to a destination peer, it will be deleted at the source peer. In this section, we give a
brief description of the history of load balancing schemes for P2P systems, especially for DHT
based P2P systems.

2.1 Task Migration Based Approaches

At an early research stage, load balancing in DHTs is aimed at balance storage load of peers
(i.e., the number of objects per peer). Many of the load balancing schemes are based on the
notion of virtual servers [11-13]. Each peer is assigned several virtual servers, each of which is
responsible for a portion of the ID space (i.e., hash space) of the DHT, and a load distribution is

 Qi Cao and Satoshi Fujita

631

conducted by migrating virtual servers among peers.
Another part of load balancing schemes is conducted by controlling the location of objects or

peers. Rieche et al. [14] proposed load balancing schemes based on moving objects between
peers. In the proposed schemes, the ID space is divided into intervals. Peers within an interval
are collaborative for all of the objects stored in the interval. If the storage load in an interval
exceeds a threshold value, the following operations are conducted: for example, 1) the interval
with an excessive load is split into two intervals if the interval contains more than 2f peers; 2) it
move peers from other intervals to the overloaded interval to reach 2f peers and splits it as in the
previous case; and 3) if there are no more than f peers within the interval the interval borders
between the overloaded interval and its neighbor intervals can be shifted to balance the load.
Karger and Ruhl [15] proposed a mechanism that allows lightly loaded peers to relocate to the
ranges of the ID space associated with many objects, in order to share the load of the peers that
are responsible for these particular ranges of the DHT space. More concretely, a lightly loaded
peer requests the load of a randomly chosen remote peer and makes a load comparison between
itself and the remote peer. If the load of the remote peer is higher, the peer will relocate to share
the range of the ID space of the remote peer.

As an alternative approach, Byers et al. [16] proposed a simple, but efficient, load balancing
mechanism (i.e., the power of two choices). When inserting an object into the system, the objects
are generated into multiple hash values using multiple hash functions, each of which corresponds
to a candidate peer for receiving the object. After retrieving the load of the corresponding peer
candidates, the object will be stored at the peer with the lightest load. The power of two choices
states quite a surprising result. For example, an exponential improvement in reducing the
maximum load of peers by using two hash values was discovered.

At a later research stage, some of researchers focused on balancing routing loads by dealing
with the skewed popularity of objects. Bianchi et al. [17] proposed an adaptive load balancing
mechanism in Pastry (i.e., where replacing peers with a high traffic rate with peers with low a
traffic rate in the routing tables if a peer becomes overloaded). Shen and Xu [18] proposed a
load balancing scheme based on elastic routing tables. By resizing the out-degree (i.e., the size
of routing table) of peers, thereby controlling the in-degree assignment of peers, it can balance
the routing load of peers.

2.2 Task Replication Based Approaches

Most of replication schemes are concerned with object replication based on single keyword
(e.g. object name) search. Object replication is widely used to improve object search efficiency
[6-8]. Meanwhile, it also implicitly improves the load balancing of peers. This is because replicas
in the intermediate peers can intercept the queries towards home peers of popular objects, which
is due to the fact that
routing load is also decreased.

Typically, replication can be categorized into three types; i.e., client-side replication, server-
side replication and path replication. By given an object, client-side replicates the object close to
requester; server-side replicates the object close to object owner and path replicates the object to
the peers in the query path from a requester to the object owner. However, most of these methods
either have little effect in reducing the average search hops or they have a cost of high overhead.

Ramasubramanian and Sirer [6] proposed an approximate replication solution for a Pastry

Cost-Effective Replication Schemes for Query Load Balancing in DHT-Based Peer-to-Peer File Searches

632

based system. Replicas of a given object are placed on a set of peers who has the same digit-
based prefix of peer ID. By estimating the popularity of each objects, different ranges of ID
space for each objects is determined. Their solution is mainly proposed for a distributed Domain
Name System (DNS), where each object is a static URL. The popularity of URLs is generally
relatively stable, while popularity of objects in file sharing systems varies in time.

Rao et al. [7] proposed an optimal replication algorithm (referred to as PCache in this paper)
for minimizing average search hops. The algorithm is based on the observation that peers with
smaller overlay distance to object owner have a higher frequency of visits, thus, the replicas are
suggested to place consecutively at predecessor peers. Each replica peer will later respond to
searches for the object. However, their observation of query distribution over peers might not be
true under the most common cases. For example, some of the predecessor peers that are close to
the object holder might forward very few queries if the access pattern over requesters is skewed.
Hence, the replicas in the PCache might not be fully utilized. They also claimed that in order to
optimize the average search hops the number of replicas generated for an object should be
proportional to the popularity of the object if the total number of replicas is predetermined.
However, the popularity estimation for all objects is a very difficult task in a distributed
environment. In order to improve the hit rate of replicas, Shen [8] proposed an efficient and
adaptive decentralized (EAD) replication algorithm. In the algorithm, each peer records and
updates the query traffic rate of each object, denoted by qf. By determining a constant value Tq
based on the average query rate in the system, if qf > Tq, the peer will initiate an object
replication request to the object owner. Such requests will be temporarily saved in a cache of the
object owner during a certain period of time. If the object owner becomes overloaded, it will
replicate an object to the peers in the cache according to qf, in a descending order. EAD can
highly improve the utilization rate of replicas. However, in the manner of load shedding, EAD
may place replicas close to the object owner. Therefore, EAD has not fully utilized the replica
for reducing search hops.

3. SYSTEM MODEL
In this section, we describe a basic keyword search model based on a class of tree-based

routing DHTs. We will also describe a skewed query model used in this paper.

3.1 Keyword Search Model

We used a class of tree-based routing DHTs defined in [19]. In such DHTs, paths from any
requester peer to all possible home peers that stored indices are aggregated and the resulting
topology is a tree. Many popular DHTs, such as Chord [1], Pastry [3] and Tapestry [4], belong
to this category. More concretely, in this paper, we consider a Chord (an example of a tree-based
routing DHT) based P2P file search system consisting of N peers, ni N, i {1, 2, ... , N}. In the
system, the index entry of each object held by a peer is maintained by its corresponding peers.
This mapping is controlled by a set of keywords attached to the object. By using the consistent
hashing and routing protocols of Chord, we can define a mapping of objects to its corresponding
peers in the following manner:

1. Each object x is attached a keyword set D(x) by its content holder.
2. For each di D(x), object x is mapped to ni if ni is a successor of hashed di .

 Qi Cao and Satoshi Fujita

633

For example, the given keywords d1, d2, d3 are assigned to an object f0, and peers of d1, d2, d3
are n1, n2, n3, respectively. The index entry of f0 will be mapped to these three peers. This ensures
that the indices of objects are approximately1 and evenly distributed over the participating peers.
An example of an index entry is given in Table 1.

Table 1. Structure of an index entry

Key Metadata Location

hash(d1) album, artist, year PeerID: n1

As shown in Table 1, an index entry consists of three main fields, i.e., key, metadata and

location. The metadata field is used to help users choosing objects to download, as well as
supporting metadata search in the system. Here, it is worth noting that an index is a set of entries
associated to a given keyword, and an index replica is a copy of the whole entries contained in
the index.

Conducting a search for a single keyword is to reveal all of the index entries containing the
keyword. The search key is mapped to a peer using Chord. The index for the computed key will
be delivered to the requester. To answer a B query that contains multiple
keywords it fetches the indices of each keyword and calculates the intersection or union of the
obtained indices as the final result. In the following section, we discuss the basic keyword
search model as described above. But, it is worth noting that by carefully caching the search
result of frequently requested keyword sets and parsing queries into proper phases, the
performance of the keyword search could be improved.

3.2 Skewed Query Model

Keyword popularity is defined as the fraction of queries associated with the keyword. Suppose
that the system receives a query consisting of several keywords. The possibility of the appearance
of a keyword in the query can be estimated by two factors: the probability of the query length
and the probability of associating each keyword to the query.

In the model, the length of each query is assumed to follow a binomial distribution, as is
roughly verified by using monthly statistical data [20]. More concretely, we assume that each
query is constructed by using a Bernoulli trial with stopping probability p. For example, the
probability that a given query has length i is given as:

 .)1(1 ppL i
d e f

i
 (1)

Let Q denote the set of queries, and L be the maximum query length. Then, according to the

basic keyword search model described in Section 3.1, the number of sub-queries generated in
the system is:

1 Consistent hashing produces a bound of O (log n) imbalance degree of keys between peers, where n is the number
of peers in the system.

Cost-Effective Replication Schemes for Query Load Balancing in DHT-Based Peer-to-Peer File Searches

634

 .)1(||
1

1

Li

i ippQ (2)

Let pj denote the probability of associating keyword dj to a query, and we assume that it follows
the . For example:

 ,
)(

1

|,| sD
sj Hi

p (3)

Where

)./1(
||1

|,|
Dj

s
sD iH (4)

and s is a parameter called the Zipf-parameter. Note that 1

||1 Dj jp by definition, where D is
the super-set of keywords in the system.

It should be worth noting that under such natural and reasonable assumptions, a number of
sub-queries will be generated for getting indices matched to the key of sub-queries. The number
of sub-queries associated with each keyword will be highly imbalanced (i.e., a popular keyword
is contained in a large number of queries, while an unpopular keyword is rarely contained in the
queries).

Fig. 1. Sub-queries received and forwarded at each peer.

To better understand this problem, we have performed a simulation to gather the sub-query

information of peers in the system. At each peer, we keep track of the number of sub-queries
received by the local index, as well as the number of sub-queries forwarded to other peers. In the
simulation, we fix N=1,000, and |D|=10,000. The total number of queries are 20,
parameter of s=0.8. The query length parameter is p=0.6 and L=10. A randomly selected peer in

 Qi Cao and Satoshi Fujita

635

the system initiates each query. Fig. 1 shows the result of the sub-queries received and forwarded
at each peer. In this figure, it is found that 1) a large number of peers in the system forwarded
much more sub-queries than they received; 2) some peers received a large number of sub-
queries, but they forwarded few sub-queries; 3) some peers received many sub-queries and also
forwarded many sub-queries. These observations justify the importance of routing the load
reduction and query load balancing in realizing low latency in index retrieval.

4. PROPOSED SCHEMES
In this section, we first introduce some notations that are used in the paper. Afterwards, we

propose three concrete replication schemes for balancing the query load. For example, 1) an
active index replication scheme to highly decrease the routing load in the system and to share
the response load received by popular indices with replica peers; 2) a proactive pointer replication
scheme to reduce the number of index replicas generated by the first scheme; and 3) a passive
index replication scheme to guarantee the maximum query load of peers.

4.1 Preliminaries

Remember that D={d1, d2, , d|D|} is the superset of keywords in the system. In the rest of
this paper, di is also used for representing a sub-query contained keyword di (i.e., sub-query di)
or an index associated with keyword di (i.e., index di). Let w(di, nj) denote the number of sub-
queries received by peer nj that stores index di (i.e., response load), and let v(di, nj) denote the
number of sub-queries initiated or forwarded by peer nj for index di (i.e., routing load). w(di, nj)
and v(di, nj) are periodically calculated by every peer during a unit time interval of T. The
exponential moving average (EMA) technique is employed to predict the traffic in the next time
period. The formula for calculating w(di, nj) and v(di, nj) of peer nj at time periods t 2 is:

),,()1(),(),(1
ji

t
ji

t
ji

t ndwndwndw

).,()1(),(),(1
ji

t
ji

t
ji

t ndvndvndv (5)

where [0, 1]. Note that a smaller makes the new observations relatively more important
than a larger , while a larger can alleviate replica fluctuation by a sudden and short traffic
variation time. An appropriate value of can be determined according to the actual situation of
the system.

Let D be the set of indices and be represented as a set of keywords assigned to nj, and let D ̄ be
the set of sub-queries and be represented as a set of keywords initiated or routed by nj. The load
of nj, denoted as (nj), is the weighted sum of its response load and routing load:

 .),(),()(
||1||1 Dj

ji
t

ji
Dj

t
def

j ndvandwan (6)

Cost-Effective Replication Schemes for Query Load Balancing in DHT-Based Peer-to-Peer File Searches

636

In the rest of this paper, we assume that the weighted factor is: a=b=1 (i.e., that the entire routing
load is higher than the entire response load in the system). For any given peer ni, we also define
the threshold value, T0, which is referred to as the target load. The target load of peers is
typically defined as follows:

./)(0
Nn

j

def

j

cNnT (7)

where c > 0 is an appropriate slack.

4.2 Active Index Replication

Under the skewed query model, if we could make a substantial reduction on the search hops
for popular indices, the routing load in the system would be highly reduced, and the response
load of home peers that stored popular indices will be shared with replica index peers.

The key idea of the first scheme is to bind the maximum response load of each index by an
appropriate constant of µ. With this constraint, an index with a popular keyword needs to have
more replicas to distribute the response load of the index.

Suppose that peer ni has an index di, then a bottom-up directed weighted tree graph rooted at
ni can be utilized for describing the query flow of searching for di. The search by a peer in the
tree is the process of moving sub-query di along the path towards the root. The level of a peer in
the tree is the path length from this peer to the root, where the level of root is 0. In the tree graph,
each peer maintains the number of incoming queries for index di from its child peers.

Fig. 2. Query flow in a tree-based routing distributed hash table.

Load information aggregation is conducted using this tree. In order to ensure utilization of

replicas, we exclude some peers with low traffic rate from being categorized as candidate peers
of index replicas by setting an appropriate minimum load threshold Tmin = , where [0, 1].
Each peer nx in the tree forwards load information of a child peer (v(di, nj), TTR) to its parent
peer, if and only if the child peer nj satisfies two condition of v(di, nj) Tmin and its routing load

 Qi Cao and Satoshi Fujita

637

v(di, nj) is the biggest among nx s child peers. TTR is initialized to 1 and is used for recording the
level of peer nj. In this way, the home peer ni will maintain R disjoint paths, which is referred to
as the critical path of the home peer. Let Ni be the direct child peer set of home peer ni, then the

 peers (i.e., |R|
|Ni|). An example of a query flow for an index is given in Fig. 2. In Fig. 2, when Tmin=200, peer
A maintains two critical paths (i.e., [B,C, D, E] and [G, M]).

The concrete process of index replication initiated at the home peer or index replica peer that
stored di is given in Algorithm 1. As shown in Algorithm 1, index replication is triggered when
the response load received by di at peer nj exceeds the threshold of µ (line 1). This operation is
periodically executed by peer nj. Each time the threshold is reached, a critical path will be
selected if the direct child peer of home peer ni has the highest routing load for index di (lines 3-
5). Upon determining the critical path, a utility value of placing replica on each peer in the
critical path is calculated, where the utility value means the reduction of the routing load if a
replica is placed on that peer. The peer corresponding to the highest utility value will be selected
to receive a replica of index di (line 6-7). The above process will be repeatedly executed until the
response load w(di, nj) is no more than µ (2-8).

Replica deletion is a reverse operation of replica placement and is effective in reducing the
maintenance cost of replicas. We are proposing a lightweight replica deletion algorithm that is
executed by each replica peer. In replica placement, each replica is attached to a TTL field,
where TTL is the retention period of the index replica. TTL can be divided into a number of unit
time intervals by T (remember that T is the unit time interval of calculating the traffic rate).
denote w(di, nj) < min is a under-loaded factor. This indicates the replica as
being an infrequently used replica. By checking the last h unit time intervals of TTL, if the w(di,
nj) < min condition continuously occurs during h time intervals, the index replica will be
automatically deleted after TTL is exhausted. Otherwise, TTL will be automatically reset to the
initial value and consequently, the index replica will be kept for a new retention period. The
most important thing to remember is that the determination of keeping index replicas can be
executed by each replica peer without extra communication cost.

Algorithm 1. Pseudocode of active index replication of di , executed at home peer or replica peer ni

Ensure: w(di, ni) µ
1: if w(di, ni) > µ then
2: repeat
3: for all path ri R do
4: Choose the path ri satisfying that ri arg max(nk , ri).
 nk Ni
5: end for
6: di, nj arg max TTR × v(di, nj).
 nj ri
7: send a replica of indices associated with di to nj.
8: until w(di, ni) µ
9: end if

4.3 Proactive Pointer Replication

The second scheme places a number of pointers for each key (i.e., hashed keyword), in order
to reduce the number of index replicas generated in the first scheme. Note that the pointer is a

Cost-Effective Replication Schemes for Query Load Balancing in DHT-Based Peer-to-Peer File Searches

638

pair of one keyword and its home peer.
Intuitively, each keyword di is assigned to a predetermined number of identified points in an

ID space. The corresponding peers of these identified points are referred to as gateway peers.
The gateway peers divide the ID space into approximately equivalent sub-ranges, each of which
maintains a pointer to the home peer of di. By having all queries initiated by peers from a sub-
range passing through the gateway peer in the sub-range, the height of the query flow tree for
the searching index of di can be compressed.

A gateway peer can monitor the traffic coming from its sub-range and can then help the home
peer with placing more replicas to the high traffic of sub-ranges, which results in effectively
reducing the routing load in the system. Moreover, increased disjoint paths towards home peers
could further balance the query load of peers.

More concretely, the idea of the second scheme is realized by introducing the system
parameter b. By changing the b-bits prefix of the hashed di, 2b 1 identified points are determined.
The home peer of di places pointers on the corresponding peers (i.e., gateway peer) of these
identified points. Then, in the query routing, each requester selects the closest gateway peer
based on the ID space distance between the search key and the requester peer. An example of
query routing using pointers based on Chord is shown in Fig. 3. As shown in Fig. 3, the hash
value of key0 is 00xx. In the case of b=2, three gateway peers corresponding to 01xx, 10xx,
and 11xx are fixed. A requester in the range between 10xx and 11xx could calculate the distance
between itself and 00xx, 01xx, 10xx, and 11xx, respectively. Then, it will choose the closest
gateway peer in the clockwise direction (i.e., the peer corresponding to 11xx). Finally, the
gateway peer will forward the query to the home peer using the information in the pointer
replica.

Fig. 3. Query routing after applying pointer replication.

The concrete process of placing pointer replicas based on Chord is given in Algorithm 2. First,

 a null set K and let m-bit k* be the hash value of keyword di (line 1). Then, peer ni
changes the b-bits prefix of k* using the bit operation function ShiftRight and ShiftLeft and then

 Qi Cao and Satoshi Fujita

639

move the 2b keys into K (line 2-6). Lastly, ni will send a pointer replica to every corresponding
peer that is the successor of k K except for ni (line 7-9).

Algorithm 2. Pseudocode of proactive pointer replication for di , executed by home peer ni

1: Let K = Ø. Let k* = hash(di) and m be the number of bits of k*.
2: Preserve low (m b) bits of k, saved as l.
3: ShiftRight(m b, k), saved as h.
4: for all i [0, 2b] do
5: ShiftLeft(m b, h i) + l, and move it to K.
6: end for
7: for all k K \ k* do
8: Home peer ni send a pointer replica to the peer corresponding to k.
9: end for

4.4 Passive Index Replication

In our system, a peer would be still overloaded due to the summation of the response load and
routing load. However, the imbalance of the query load of peers is alleviated after Scheme 1 and
Scheme 2 are applied. In order to solve this problem, we distinguished the overloading of peers
that mainly result from the routing load and from the respond load. We also effectively determined
the operation of pushing or pulling index replicas under each case.

The concrete process of load shedding is given in Algorithm 3. A query counter for counting
total number of incoming queries is used at every peer (line 1). If peer ni exceeds the threshold
of query load T0 (line 2), then the following process is used to justify the main cause of this
overloading (line 4-11). If this overloading is mainly caused by the response load (line 4), ni will
choose an index replica of di for its neighbor peer nj, where di and nj are selected by sorting w(di,
nj), which is maintained by peer ni (line 5-6). Otherwise, ni will pull an index replica from the
home peer that stored index di, and then push the index replica to its neighbor peer nj, where di
and nj are selected by sorting v(di, nj), which is maintained by peer ni (line 8-10). This process
will be repeatedly executed until query load (ni) is no more than T0 (3-12).

Algorithm 3. Pseudocode of excessive load shedding, after the query load of peer ni exceeds T0

Ensure: (ni) T0

 1: query_counter query_counter+1
 2: if query_counter > T0 then
 3: repeat
 4: if 1 D| w(di , n j) 1 i |D̄| v(di , nj) then
 5: di , nj arg max w(di, nj)

di D , n j Ni
 6: push a replica of indices associated with di to neighbor peer nj

7: else

 8: di , nj arg max v(di , nj)
di D̄ , n j Ni

 9: pull a replica of indices associated with di from home peer
10: push the replica of indices associated with di to neighbor peer nj
11: end if
12: until (ni) T0
13: end if

Cost-Effective Replication Schemes for Query Load Balancing in DHT-Based Peer-to-Peer File Searches

640

The purpose of our third scheme is to eliminate a bottleneck situation from occurring in the
system query processing. Thus, an appropriate target load T0 should be determined according
to the actual situation of the system. It is worth noting that there is a trade-off between the target
load and index replication cost incurred by the third scheme. If the target load is set with a high
slack value c, the maximum query load of the peers would still be high, and consequently, these
peers would create a bottleneck in query processing. On the other hand, if the target
load were set with a small slack value c, a large number of index replicas would be created. As
such, the maintenance cost of these index replicas in the system would be high.

5. SIMULATION
We evaluated our proposed schemes based on Overlay Weaver [21]. We used Chord as the

routing protocol in our simulation. Chord assigns each peer a 160-bit identifier using a SHA-1
hash function. Each peer maintains its successor, predecessor, and finger table with 160 entries.
Note that the size of finger table would be incomplete when the system stabilization process of
Chord is not conducted enough times. In our simulations, the stabilization period is set from 2
seconds to 128 seconds. After all of the peers join the system the system waits for 1 hour to
allow peers to fix their finger tables before uploading the index and conducting query searches.

The simulations in this section were conducted to verify the effect of index replications. Thus,
we assumed that each index size was equivalent (e.g. 200 kB), and we measured the cost of
index replication in terms of the number of index replicas in the system. In other words, we did
not simulate the actual maintenance cost of index replicas, and we did not simulate the size of
each object. Finally, the cost of pointer replication has been ignored in the simulation. This is
because the size of the pointer replica was small enough.

5.1 Simulation Model

In the following simulations, we fix N=1000, and |D|=50, i.e., it is a static setting that the
number of peers and the number of keywords will not be changed in simulations. The probability
of associating keyword set from D s =
0.8. The total number of queries is fixed to 20,000. The length of each query is determined by a
Bernoulli trial with stopping probability 0.4, i.e., the probability of assigning i tags is given by
(0.6) 1 × 0.4, while the maximum length of each query is bounded by 10. The time interval of
generating queries is 20 ms. The query initiator in each query interval is chosen from peers in
the system, and such selection follows a bounded Pareto distribution with parameter 2. The unit
time interval T = 1 second, and the EMA parameter = 0.5. The system parameter b = 4. Note
that the weight of response load and routing load are fixed to 1. Finally, we did not set any
restriction on the storage capacity of each peer.

5.2 Effect of Replication Schemes

We first evaluate the performance of three replication-based query load balancing schemes.
Fig. 4 provides a summary of the results. The vertical axis is the query load of each peer and the
horizontal axis is peers arranged in an ascending order of the query load. The four curves in the
figure show the initial query load distribution and the query load distributions after the three

 Qi Cao and Satoshi Fujita

641

schemes were applied, respectively. Empirically, we set µ=500 and Tmin=80 in Scheme 1. The
reason for determining Tmin=80 can be explained using Table 2. In Table 2, we investigated the
effect of Tmin by varying Tmin from 30 to 180 with an interval of 50. We found that when Tmin is
smaller than 80, it cannot significantly reduce the replication cost. Whereas, a smaller Tmin
means that more load aggregation messages are needed in the system. Thus, we set Tmin=80 in
Scheme 1. In addition, the target query load was T0=1,000.

As shown in Fig. 4, by applying Scheme 1, the query load (more exactly, routing load) of the
system was significantly reduced by 47.26%, as compared to the initial state. Meanwhile, the
load variation was significantly reduced from 1,055.79 to 627.52. Furthermore, by combining
Scheme 1 and Scheme 2, the query load was reduced by 68.28%, as compared to the initial state,
and the load variation was reduced to 262.44. In Fig. 4, it is easy to see that the query load of
peers is more balanced after Scheme 2 was applied. Finally, when Scheme 3 was applied, the
query load was reduced by 73.95%, as compared to the initial state, and the load variation was
further reduced to 165.69.

Table 2. Effect of parameter Tmin

Tmin Number of index replicas
180 175
130 158
80 135

30 134

Fig. 4. Load distribution after the replication schemes were applied.

Table 3 shows the cost of replication schemes in terms of the number of index replicas. This

result indicates that by applying Scheme 2, it can reduce the number of index replicas generated
by Scheme 1. Moreover, by applying Scheme 3, query load of all peers are smaller than target
load.

Consequently, we were able to attain a sufficient query load reduction with Scheme 1. After
applying Scheme 2, we were able to get more even load distributions, as compared to Scheme 1,

Cost-Effective Replication Schemes for Query Load Balancing in DHT-Based Peer-to-Peer File Searches

642

and at a smaller cost. There are a few overloaded peers that were not helped by Scheme 1 and
Scheme 2, but Scheme 3 effectively resolved them at an acceptable cost.

Table 3. Cost of replication

Scheme Number of index replicas
Initial State NULL

Scheme 1 135

Scheme 1 and 2 98

Scheme 1, 2 and 3 120

5.3 Comparison with PCache Replication

In this section, we compare our replica placement schemes with PCache replication. To be
fairly comparable, we evaluate the effect of query load distribution when the given number of
replicas is equal to 80. Fig. 5 illustrates the results.

Fig. 5. Comparison with PCache.

As shown in Fig. 5, Scheme 1 can further reduce 34.36% of the query load, as compared to

PCache. The load variation of PCache is 713.69, which is higher than the 513.25 in Scheme 1.
This is because in each index replication operation, PCache consecutively places the index
replicas at the predecessor peers without considering the actual query rate of the replica peers.

5.4 Comparison with EAD

In this section, we compare our replica placement schemes with EAD replication. Under a
given target load T0, we evaluated the index replication cost in terms of the number of index
replicas. Fig. 6 illustrates the index replication cost of different schemes. By varying the threshold
of response load µ from 500 to 900, we found that the number of index replicas generated by
EAD is higher than our schemes. It is worth noting that when µ is smaller, the cost of EAD
becomes significantly higher than our schemes. This is because that EAD selects candidate

 Qi Cao and Satoshi Fujita

643

replica peers only according to query rate. This results in a large number of replicas being placed
near the home peer. In contrast, in Scheme 1, we used TTR to record the level of the candidate
replica peers. This allowed us to select candidate replica peers in order to more effectively
reduce the routing load than EAD allows.

Fig. 6. Comparison with EAD.

6. CONCLUDING MARKS
In this paper, we studied the query load balancing problem in DHT-based P2P file search, and

proposed an integrated solution that consists of three replication schemes to solve it. We
evaluated the performance of the proposed schemes by simulation. The results demonstrate that
all of the schemes can work in coordination to avoid the overloading of peers and to alleviate the
query load imbalance for the systems. Moreover, by comparing the two prominent replica
placement schemes, the cost-effectiveness of the proposed schemes was proved.

However, in practice, P2P systems present many problems, such as low bandwidth or low
connectivity peers. Low bandwidth peers impose an effect on performing query processing tasks.
On the other hand, low connectivity peers introduce a big challenge in managing replicas. This
is due to the fact that these peers usually connect to the system to download a few files and then
disconnect. In our future work, we would like to measure the performance of our replication
schemes in a more realistic P2P environment. This includes looking at areas such as large size of
keyword set, and heterogeneous bandwidth of peers.

REFERENCES
[1] -to-peer

lookup service for Internet a in Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM2001), San
Diego, CA, 2001, pp. 149-160.

[2] -addressable
 in Proceedings of the 2001 Conference on Applications, Technologies, Architectures, and

Cost-Effective Replication Schemes for Query Load Balancing in DHT-Based Peer-to-Peer File Searches

644

Protocols for Computer Communications (SIGCOMM2001), San Diego, CA, 2001, pp. 161-172.
[3] -

scale peer-to- in Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware2001), Heidelberg, Germany, 2001, pp. 329-350.

[4] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, -tolerant wide-
area location and routing, Technical Report, University of California at Berkeley, CA, 2001.

[5] M. E. Contemporary Physics, vol. 46,
no. 5, pp. 323-351, 2005.

[6] -law query
distributions in peer-to- in Proceedings of the 1st Symposium on Networked Systems
Design and Implementation (NSDI2004), Berkeley, CA, 2004, pp. 8-8.

[7] W. Rao, L. Chen, A. W. C. Fu, and G. peer-to-peer
IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 7, pp. 1011-1026, 2010.

[8] file sharing
IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 6, pp. 827-840, 2010.

[9] -center: effective replica placement in peer-
to- in Proceedings of the Global Communications Conference (GLOBECOM2007),
Washington, DC, 2007, pp. 2008-2013.

[10] A. -to-
in Databases, Information Systems, and Peer-to-peer Computing. Heidelberg: Springer, 2005, pp. 74-
85.

[11] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and -area cooperative storage with
in Proceedings of the 18th ACM Symposium on Operating System Principles (SOSP2001),

Banff, Canada, 2001, pp. 202-215.
[12] ncing in dynamic

 in Proceedings of 23rd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2004), Hong Kong, Chana, 2004, pp. 2253-2262.

[13] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. P2P
s in Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS2003),
Berkeley, CA, 2003, pp. 68-79.

[14] -dissipation-based approach for balancing data load
 in Proceedings of the 29th Annual IEEE International Conference on

Local Computer Networks (LCN2004), Tampa, FL, 2004, pp. 15-23.
[15] or peer-to- in

Proceedings of the 16th Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA2004), Barcelona, Spain, 2004, pp. 36-43.

[16] in Proceedings of
the 2nd International Workshop on Peer-to-Peer Systems (IPTPS2003), Berkeley, CA, 2003, pp. 80-
87.

[17] in
Proceedings of 15th International Conference on Computer Communications and Networks
(ICCCN200), Arlington, VA, 2006, pp. 411-418.

[18] H. Shen and C.
DHT n IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 2, pp. 242-256,
2010.

[19] -based routing distributed
IEEE Transactions on Dependable and Secure Computing, vol. 8, no. 3, pp. 419-433,

2011.
[20] Trellian, Keyword and search engines statistics, http://www.keyworddiscovery.com/keyword-

stats.html.
[21] W

Computer Communications, vol. 31, no. 2, pp. 402-412, 2008.

 Qi Cao and Satoshi Fujita

645

Qi Cao
He received B.E. degree from Tianjin University of Science and Technology in
2007 and M.E. degree from Hiroshima University in 2010. He is a Ph.D. student
at Department of information engineering, Hiroshima University. His research
interests are in the field of design, implementation and performance evaluation
of peer-to-peer systems.

Satoshi Fujita
He received the B.E. degree in electrical engineering, M.E. degree in systems
engineering, and Dr.E. degree in information engineering from Hiroshima
University in 1985, 1987, and 1990, respectively. He is a Professor at Graduate
School of Engineering, Hiroshima University. His research interests include
communication algorithms on interconnection networks, parallel algorithms,
graph algorithms, and parallel computer systems. He is a member of the

Information Processing Society of Japan, SIAM Japan, IEEE, and SIAM.

