References
- Ilbas M, Crayford AP, Yilmaz I, Bowen PJ, Syred N. Laminar velocities of hydrogen-air and hydrogen-methane-air mixtures: an experimental study. Int J Hydrogen Energy 2006;31:1768-79. https://doi.org/10.1016/j.ijhydene.2005.12.007
- Halter F, Chauveau C, Djebaili-Chaumeix N, Gokalp I. Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane-hydrogen-air mixtures. Proc Comust Inst 2005;30:201-8.
- Dagaut P, Nicole A. Experimental and detailed kinetic modeling of hydrogen-enriched natural gas blend oxidation over extended temperature and equivalence ratio ranges. Proc Combust Inst 2005;30:2631-8.
- Park J, Keel SI, Yun JH, Kim TK. Effects of addition of electrolysis products in methane-air diffusion flames. Int J Hydrogen Energy 2007;32:4059-70. https://doi.org/10.1016/j.ijhydene.2007.05.024
-
Kim JS, Park J, Kwon OB, Lee EJ, Yun JH, Keel SI (2008). Preferential diffusion effects in opposedflow diffusion flame with blended fuels of
$CH_4$ and$H_2$ . Int. J. Hydrogen Energy 33, 842-850. - Park J, Park JS, Kim HP, Kim JS, Kim S, Cho HC, Cho KW, Park HS. NO emission behavior in oxy-fuel combustion recirculated with carbon dioxide. Energy Fuels 2007;21:121-9. https://doi.org/10.1021/ef060309p
- Liu F, Guo H. Smallwood GJ, Gulder O. Numerical study of the superadiabatic flame temperature phenomenon in hydrocarbon premixed flames. Proc Combust Inst 2002;29:1543-50.
-
Fotache CG, Tan Y, Sung CJ, Law CK. Ignition of CO/
$H_2/N_2$ versus heated air in counterflow: experimental and modeling results. Combust Flame 2000;120:417-26. https://doi.org/10.1016/S0010-2180(99)00098-X - Vagelopoupos CM, Egolfopoulos FN. Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air. Proc Combust Inst 1994;25:1317-23.
- Mclean IC, Smith DB, Taylor SC. The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO+OH reaction. Proc Combust Inst 1994;25:749-57.
-
Brown MJ, Mclean IC, Smith DB, Taylor SC. Markstein lengths of CO/
$H_2$ /air flames, using expanding spherical flames. Proc Combust Inst 1996;26:875-81. -
Natarajan J, Lieuwen T, Seitzman J. Laminar flame speeds of
$H_2$ /CO mixtures: effects of$CO_2$ dilution, preheat temperature, and pressure. Combust Flame 2007;151:104-9. https://doi.org/10.1016/j.combustflame.2007.05.003 -
Davis SG, Joshi AV, Wang H, Egolfopoulos F. An optimized kinetic model of
$H_2$ /CO combustion. Proc Combust Inst 2005;30:1283-92. - Zsely IG, Zador J, Turanyi T. Uncertainty analysis of updated hydrogen and carbon monoxide oxidation mechanisms. Proc. Combust Inst 2005;30:1273-81.
- Sun H, Yang SI, Jomaas G, Law CK. High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion. Proc Combust Inst 2007;31:439-46.
-
Drake MC, Blint RJ. Structure of Laminar opposed-flow diffusion flames with CO/
$H_2/N_2$ fuel. Combust Sci Tech 1988;61:187-224. https://doi.org/10.1080/00102208808915763 -
Park J, Bae DS, Cha MS, Yun JH, Keel SI, Cho HC, Kim TK, Ha JS. Flame characteristics in
$H_2$ /CO synthetic gas diffusion flame diluted with$CO_2$ : effects of flame radiation and mixture composition. Int. J. Hydrogen Energy 2008, in press. -
J. Park, O.B. Kwon, J. H. Yun, S.I. Keel, H.C. Cho, and S.C. Kim. Preferential diffusion effects on flame characteristics in
$H_2$ /CO syngas diffusion flames diluted with$CO_2$ . Int. J. Hydrogen Energy 2008, in press. - Chen R, Chaos M, Kothawala A. Lewis number effects in laminar diffusion flames near and away from extinction. Proc Combust Inst 2007;31:1231-37.
- Ruf B, Behrendt F, Deutchmann O, Kleditzsch S, Warnatz J. Modeling of chemical deposition of diamond films from acetylene-oxygen flames. Proc Combust Inst 2000; 28: 1455-61.
-
Liu F, Gulder O. Effects of
$H_2$ and H preferential diffusion and unity Lewis number on superadiabatic flame temperatures in rich premixed methane flames. Combust Flame 2005;143:264-81. https://doi.org/10.1016/j.combustflame.2005.03.018 - Kee RJ, Miller JA, Evans GH, Dixon-Lewis G. A computational model of the structure and extinction of strained, opposed flow, premixed methaneare flame. Proc. Combust. Inst. 1988;22:1479-94.
- Lutz AE, Kee RJ, Grcar JF, Rupley FM. A fortran program for computing opposed-flow diffusion flames. Sandia National Laboratories Report 1997;SAND 96-8243.
- Ju Y, Guo H, Maruta K, Liu F. On the extinction limit and flammabiliy limit non-adiabatic stretched methane-air premixed flames. J. Fluid Mech 1997;342:315-34. https://doi.org/10.1017/S0022112097005636
- Kee RJ, Rupley FM, Miller JA. Chemkin II: a fortran chemical kinetics package for analysis of gas phase chemical kinetics. Sandia National Laboratories Report 1989; SAND 89-8009B.
- Kee RJ, Dixon-Lewis G, Warnatz J, Coltrin ME, Miller JA. A fortran computer code package for the evaluation of gas-phase multi-component transport. Sandia National Laboratories Report 1994;SAND86-8246.
- Chellian HK, Law CK, Ueda T, Smooke MD, Williams FA. An experimental and theoretical investigation of the dilution, pressure and flow-field effects on the extinction condition of methane-airnitrogen diffusion flames. Proc Combust Inst 1990;23:503.
- Law CK. Dynamics of stretched flames. Proc Combust Inst 1988;22:1381-1402.