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Stepwise efficiency improvement in data envelopment analysis (DEA)-based benchmarking is a realistic and 
effective method by which inefficient decision making units (DMUs) can choose benchmarks in a stepwise 
manner and, thereby, effect gradual performance improvement. Most of the previous research relevant to step-
wise efficiency improvement has focused primarily on how to stratify DMUs into multiple layers and how to 
select immediate benchmark targets in leading levels for lagging-level DMUs. It can be said that the sequence of 
benchmark targets was constructed in a myopic way, which can limit its effectiveness. To address this issue, this 
paper proposes an optimization approach to the construction of a sequence of benchmarks in DEA-based bench-
marking, wherein two optimization criteria are employed : similarity of input-output use patterns, and proximity 
of input-output use levels between DMUs. To illustrate the proposed method, we applied it to the benchmarking 
of 23 national universities in South Korea.
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1. Introduction

Benchmarking has been defined as “a continuous, systematic 
process for evaluating the products, services, and work proc-
esses of organizations that are recognized as representing 
best practices for the purpose of organizational improvement” 
(Spendolini, 1992). Generally, a benchmarking process con-
sists of three steps. The first step is to identify a unit (or a 
group of units) that is acknowledged as the best performer, 
the second is to set a benchmarking goal and to recognize the 
activities required in order to catch up with the best perform-

er, and the third is to implement the best practices and, thus, 
achieve the benchmarking objective (Donthu et al., 2005). 
For benchmarking, an effective methodology for best-perfor-
mer identification is essential, for which purpose, data enve-
lopment analysis (DEA) has been widely used (Ross and 
Droge, 2002). DEA is a methodology for measuring the rela-
tive efficiencies of a set of homogeneous decision making 
units (DMUs) and providing integrated benchmarking infor-
mation. It identifies an efficient frontier (trade-off curve) that 
comprises Pareto optimal DMUs along with their respective 
efficiency scores. DMUs on the efficient frontier can serve as 
empirical benchmark targets for inefficient DMUs. DEA has 
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been applied to relative-efficiency evaluation of DMUs and 
benchmarking in various fields, such as banking, health care, 
agriculture, farming, transportation, education, manufactur-
ing, and others. For more details on DEA application, please 
refer to Liu et al. (2013).

DEA, whereas it is a useful tool for identification of best 
performers (efficient units), its use has some limitations, in 
that it requires an inefficient DMU to achieve its target’s effi-
ciency in a single move, which might not be feasible in 
practice. This is true especially when an inefficient DMU un-
der evaluation is far from its benchmark target DMU on the 
efficient frontier (Cooper et al., 2006).

To overcome this problem, various alternative DEA-based 
benchmarking methods, by which inefficient DMUs can cho-
ose benchmark targets in a stepwise manner and, thereby, 
achieve gradual performance improvement, have been propo-
sed. Talluri (2000) proposed a performance evaluation and 
benchmarking method that utilizes a combination of DEA, 
game theory, and clustering methods in identifying effective 
stepwise benchmarks for poorly performing business proces-
ses. Alirezaee and Afsharian (2007) developed a layered effi-
ciency evaluation model for resolving DEA difficulties in the 
presence of outlier data, based on which a stepwise improve-
ment strategy for inefficient DMUs can be formulated. Estra-
da et al. (2009) proposed a proximity-based stepwise bench-
mark target selection method whereby DEA is used to de-
termine efficiency scores, a self-organizing map (SOM) is 
utilized for clustering DMUs according to their input levels, 
and a reinforcement learning algorithm is adopted to deter-
mine the optimal path to the frontier. However, optimal ben-
chmarking paths obtained by this method can vary signifi-
cantly according to the selected SOM parameter values (e.g., 
minimum increase rate, discount factor, and map size). Suzu-
ki and Nijkamp (2011) developed an integrated DEA-based 
technique by combining the distance friction minimization 
(DFM) and context-dependent models. Although this meth-
odology can provide a stepwise efficiency-improving projec-
tion, its practical use is limited, since it might, in the end, 
provide only hypothetical (not actually observed) benchmark 
targets for inefficient DMUs. Sharma and Yu (2010) intro-
duced decision tree (DT)-based context-dependent DEA to 
enhance the capability and flexibility of general DEA. This 
model proceeds by construction of multiple efficient frontiers 
for the level-wise reference set and diagnosing the factors 
that differentiate inefficient DMU performance. Sharma and 
Yu (2009) proposes a combined data mining/DEA model as 
a diagnostic tool that can effectively measure the efficiencies 
of inefficient terminals and prescribe a stepwise projection to 
reach the frontier in accordance with their maximum capacity 
and similar input properties. Lim et al. (2011) advocated, for 
stepwise benchmark target selection, the use of the attractive-
ness and progress measures of context-dependent DEA along 
with the consideration of feasibility. While their approach 
employs some optimization criteria for choosing targets, it 
seeks to select only locally optimal targets, and thus does not 

assure a globally optimal target sequence. Park et al. (2012) 
proposed a stepwise benchmark target selection method based 
on preference, direction and similarity criteria. This method 
integrates the three criteria to construct a more practical and 
feasible sequence of benchmarks. Park et al. (2012) introdu-
ced, for the purposes of for port-efficiency improvement, a 
DEA-based stepwise benchmarking method that considers a 
minimization-improving performance measure.  

As is perhaps apparent, most of the previous research rele-
vant to DEA-based stepwise benchmarking can be consid-
ered to have followed a myopic (or local) optimization ap-
proach in focusing primarily on how to stratify DMUs into 
multiple layers and how to select immediate benchmark tar-
gets in leading levels for lagging-level DMUs. To address 
this local optimization issue, we propose a global optimiza-
tion approach to the construction of a sequence of stepwise 
benchmark targets in DEA-based benchmarking, in which 
two optimization criteria are employed: similarity of input- 
output use patterns, and proximity of input-output use levels 
between DMUs. The proposed approach suggests a reduced 
benchmarking network, which is a network structure consist-
ing of an alternative sequence of benchmark targets consider-
ing the first optimization criterion, similarity of input-output 
use patterns. Subsequently it provides a method for selection 
of the optimal stepwise benchmarking path based on the sec-
ond optimization criterion, the proximity of the input-output 
use levels between DMUs. In order to illustrate the effective-
ness and demonstrate the advantages of this method, it was 
applied to 23 national universities in South Korea for deter-
mination of optimal stepwise benchmarking paths. In gen-
eral, two kinds of benchmark reference target for an ineffici-
ent DMU can be considered in DEA-based benchmarking: 
existing units and hypothetical units. The former is an ac-
tually existing DMU that is located on the efficient frontier. 
The latter is not an existing DMU but rather a projection 
point representing a convex combination of DMUs on the ef-
ficient frontier. In setting benchmarking goals or strategies, 
selecting existing units as the benchmark target can be more 
practical, because the inefficient DMU that wants to improve 
its efficiency can utilize actual information. On the other 
hand, selecting hypothetical units as the benchmark target 
can lead to unrealistic benchmarking in setting benchmarking 
strategies or implementing the best practice, because learning 
additional knowledge from hypothetical units is problematic 
(Lim et al., 2011). For this reason, in the present study, only 
existing units were considered as benchmark targets.  

This paper is organized as follows. Section 2 discusses the 
framework of the proposed approach, and Section 3 defines 
the two optimization criteria. Section 4 defines a benchmark-
ing network and a reduced benchmarking network, and Sec-
tion 5 explains the process of determining the optimal bench-
marking path in the reduced benchmarking network. Section 
6 details our empirical study, in which the proposed method 
was applied to 23 national universities in South Korea. Finally, 
Section 7 summarizes our work and discusses future research.
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Table 1. Methodologies applied in relevant research
Ref Methodology Characteristic

Talluri (2000) Multifactor productivity analysis, Game theory, Clustering method

Local optimization 
approach

Alirezaee and Afsharian (2007) Classification, Improvement approach
Estrada et al. (2009) DEA, Self-organizing map, Reinforcement learning algorithm
Suzuki and Nijkamp (2011) Distance friction minimization, Context-dependent model

Sharma and Yu (2010) Decision tree, Context-dependent model (with attractiveness, 
progress, prioritize)

Sharma and Yu (2009) Self-organizing map, Context-dependent model
Lim et al. (2011) Context-dependent model (with attractiveness, progress, feasibility)
Park et al. (2012) Self-organizing map, Context-dependent model, Distance measure

Park et al. (2012) Context-dependent model, Distance-minimization, Sensitive 
analysis

This paper Context-dependent model, Clustering, Cross-evaluation, Network 
optimization

Global optimization 
approach

2. Framework of proposed method 

The framework of the proposed method consists of two parts, 
as shown in <Figure 1> : formulation of a benchmarking net-
work, and choice of the optimal benchmarking path. The pro-
cedure for the formulation of a benchmarking network starts 
by stratifying all DMUs into several layers according to their 
efficiency scores. After thus stratifying the DMUs, a bench-
marking network consisting of every alternative sequence of 
intermediate benchmark targets (IBTs) is constructed for the 
use of an inefficient DMU that wants to improve its effi-
ciency score according to an ultimate benchmark target 
(UBT). Finally, a reduced benchmarking network is con-
structed by refining the benchmarking network based on the 
similarity of input-output use patterns. To achieve the re-
duced benchmarking network, all of the DMUs are classified 
into several clusters by utilizing a combined cross-efficiency 
DEA method/K-means clustering algorithm. Based on the re-
duced benchmarking network, the choice of the optimal 
benchmarking path can be the optimal sequence of stepwise 
benchmark targets that maximizes, by application of a net-
work optimization model, the proximity of the input-output 
use levels between DMUs. To determine the proximity of the 
input-output use levels between DMUs, the similarity co-
efficients for the reduced benchmarking network are measured.

The procedure of the proposed method can be regarded as 
rather complex, since it is composed of several steps includ-
ing stratification, K-means clustering algorithm, and network 
optimization. Similarly, we can appreciate that most of the 
previous methodologies reviewed in section 1 can also be re-
garded as rather complex. A short summary of the previously 
presented methodologies is provided in <Table 1>. Neverthe-
less, the previous methods have been considered practical 

benchmarking approaches in that they enable an inefficient 
DMU to improve its efficiency gradationally. Notably, our 
approach deals with a global optimization issue in order to 
overcome a drawback of the previous methods, in that they 
selected immediate benchmark targets only in the leading 
level for lagging-level DMUs, and suggests two practical op-
timization criteria for selection of benchmark targets. Thus, 
the contribution of our approach is the facilitation of ineffici-
ent units’ efficiency-level increases in terms of global opti-
mization. 

Figure 1. Framework of proposed method



An Optimization Approach to the Construction of a Sequence of Benchmark Targets in DEA-Based Benchmarking 631

Table 2. Supermarket example
Store A B C D E F G H I J K L

Employees (unit : 10) x1 2 4 8 3 4 5 5 6 6 6 6 7
Floor area (unit : 100m2) x2 4 2 1 6 3 2 6 3 5 9 4 7
Sales (unit : $100,000) y 1 1 1 1 1 1 1 1 1 1 1 1

3. Optimization Criteria : Similarity 
of Input-Output Use Patterns and 
Proximity of Input-Output Use 
Levels between DMUs

In the real-world situations, many companies compete with 
other companies having a similar input or output sizes. For 
example, a small-sized company would set as a benchmark 
target not a major company but a small or medium-sized com-
pany. González and Álvarez (2001) suggested that when a firm 
is informed that it is inefficient, a reasonable strategy for its 
benchmark target selection would be to select and benchmark 
the efficient firm that is most similar in its input use. In other 
words, considering the similarity of resource size makes the 
benchmark target selection more practical. It was for this rea-
son that the present research’s two resource-size criteria con-
sidered for construction of the optimal sequence of stepwise 
benchmark targets were similarity of input-output use patterns 
and proximity of input-output use levels between DMUs. 

3.1 Similarity of Input-Output Use Patterns
The first criterion, similarity of input-output use patterns, 

is employed to reduce the alternative sequence of benchmark 
targets from the benchmarking network by clustering IBTs, 
which have the similar input-output use pattern. To illustrate 
the economical utility of this criterion, consider the simple 
numerical supermarket example introduced in (Cooper et al., 
2006) but with more DMUs added, as shown in <Table 2>. 
There are twelve DMUs, each consuming two inputs (em-
ployee and floor area) and yielding one output (sales). The 
data and efficiency scores are plotted on a 2-dimensional 
plane in <Figure 2>. 

In <Figure 2>, we suppose that J can choose an IBT be-
tween D and H (both are the same efficiency score: 0.667), 
and that it can then also choose an UBT between A and B 
(both are the same efficiency score: 1). Given these assump-
tions, J has four alternative stepwise benchmarking paths: J
→D → A, J →D → B, J →H → A, and J →H → B. Let’s 
compare two of them, J →D → A and J →D → B. In gen-
eral, an inefficient DMU that wants to improve its efficiency 
score (hereafter called evaluated DMU) improves by re-
ducing its input usage or increasing its output yield in the 
DEA. Therefore, when J is regarded as the evaluated DMU, 

for the benchmarking path J →D → A, J has to reduce in-
puts (x1, x2) by 3 and 3, respectively, to benchmark D, and 
then it has to reduce inputs by 1 and 2, respectively, to 
benchmark A. On the other hand, for the benchmarking path 
J →D → B, J has to reduce inputs (x1, x2) by 3 and 3, re-
spectively, to benchmark D, and then it has to reduce inputs 
(x1, x2) by -1 (not reduce x1, but inversely increase by 1) and 
4 to benchmark B. In other words, for stepwise benchmark-
ing in case of the benchmarking path J →D → B, J has to 
reduce x1 by 3 first and then increase it by 1 inversely. In 
general, it increasing some inputs or decreasing some outputs 
should not be considered an unreasonable strategy for a 
DMU’s efficiency score improvement. However, the above- 
noted benchmarking case can be an unnecessary and ineffec-
tive efficiency-improvement approach, because J has to re-
duce x1 and then increase it inversely (hereafter referred to as 
zigzagging). This zigzagging can be regarded as an un-
reasonable efficiency-improvement activity. 

Figure 2. Sample data on 2-dimensional plane

Let’s now consider the two other alternative benchmarking 
paths: J →H → A and J →H → B. For the benchmarking 
path J →H → B, J has to reduce inputs (x1, x2) by 0 and 3, 
respectively, to benchmark H, and then reduce inputs by 2 
and 1, respectively, to benchmark B. On the other hand, for 
the benchmarking path J →H → A, J has to reduce x1 by 4 
and increase x2 by 1 inversely to benchmark A after it bench-
marks H. In the benchmarking path J →H → A, H can be an 
inadequate IBT, since it leads to an ineffective resource-im-
provement activity. In other words, if J benchmarks A as its 
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UBT, D can be a more effective and proper IBT than H in 
terms of resource improvement. 

In order to minimize the probability of selection of H as 
the IBT when J benchmarks A as the UBT (zigzagging activ-
ity), we suggest a DMU resource use pattern. Let’s consider 
the following case. We assume that an absolute UBT of all 
DMUs is a hypothetical DMU on zero point (x1 = 0, x2 = 0). 
If J, D and A want to benchmark this UBT, they have to im-
prove their resources as (6, 9), (3, 6) and (2, 4), respectively; 
their resource pattern ratio can be represented as (1:1.5), 
(1:2) and (1:2), respectively. Further, that of H and B can be 
represented as both (1:0.5), respectively. Note that the re-
source pattern ratio in this example can seem commensu-
rable, but it is represented under the condition that units of 
input 1 and 2 are (10 persons and 100m2), respectively. Here, 
we can see that the resource pattern ratios of A and D are 
similar to that of J, whereas those of H and B are dissimilar 
to that of J. Additionally, we can consider the benchmarking 
direction from the evaluated DMU to the UBT for the re-
source-improvement pattern. As shown in <Figure 2>, if J 
wants to benchmark A as its UBT, and if it can select D and 
H as its IBTs, D is located closer to A than H. Otherwise, if J 
wants to benchmark B as its UBT, H is closer to B than D. 
Consequently, although considering the resource use pattern 
cannot completely avoid the selection of inadequate DMUs 
as the IBT, it can reduce the probability of doing so.  

Furthermore, considering the similarity of the input-output 
use pattern in selecting IBTs implies the consideration of the 
similarity of benchmarking strategies or implementation plans. 
As noted above, an inefficient organization, after selecting its 
benchmark targets, needs to establish benchmarking strat-
egies and implementation plans. Stepwise benchmarking, 
however, entails the carrying out of several benchmarking 
activity steps, each of which requires its own benchmarking 
strategy and implementation plan. This onerous task can di-
minish benchmarking efficiencies. Alternatively, a more ef-
fective and efficient benchmarking activity for an inefficient 
DMU might be to select IBTs gradationally, according to 
similar benchmarking strategies and implementation plans. 

3.2 Proximity of Input-Output Use Levels 
Between DMUs

The proximity of the input-output use levels is employed 
to select a benchmarking path consisting of a benchmark se-
quence that minimizes the input reduction or output increase 
necessary for improvement. In other words, by considering 
the proximity of the input-output use levels between DMUs, 
the evaluated DMU can select its IBTs according to a mini-
mum reduction/expansion of the input and output resources. 
In this regard, Park et al. (2012), Baek and Lee (2009) and 
González and Álvarez (2001) made the point that the mini-
mal effort required to become efficient is closely related to 
the similarity between DMUs. Especially, Yi et al. (2003) 
emphasized the similarity of benchmarks, and computed the 

Euclidean distance between the two vectors to determine the 
degree of similarity between two benchmark DMUs. Amirtei-
moori and Kordrostami (2010) also proposed a Euclidean- 
distance-based efficiency measure for DEA. Baek and Lee 
(2009) proposed a least distance measure (LDM) method to 
obtain the shortest projection from the evaluated DMU to the 
strongly efficient production frontier. They checked the val-
idity of the LDM for providing a reasonable measure of effi-
ciency considering conditions such as strongly monotonic, 
translation invariant and unit invariant. Similarly, Park et al. 
(2012) proposed a benchmarking method that can select ben-
chmark targets with minimum reduction/expansion of the in-
puts and outputs of the evaluated DMU. 

To determine the proximity of the input-output use levels, 
the LDM method is applied to measure the similarity co-
efficient with respect to the inputs and outputs. In the general 
distance concept, a shorter distance denotes less difference 
between two physical points. In the present context, the dif-
ference between two points can be regarded as the necessary 
extent of resource reduction or expansion between two 
DMUs. Therefore, selecting a benchmark target by minimiz-
ing the reduced inputs or expanded outputs is the same as se-
lecting a benchmark target at the shortest distance from the 
evaluated DMU.

Let’s consider the supermarket example in <Table 2> for 
better understanding of the concept of the proximity of input 
and output levels. Assume that L can select its IBT between 
D and I, which have a relatively similar efficiency. In order 
for L to benchmark D and I, it has to reduce its inputs by 4 
and 1 and 1 and 2, respectively. Measuring the distances from 
L to D and I by the Euclidean distance method, the distances 
obtained are 4.12 and 2.24, respectively. In other words, for 
L, I as a benchmark target minimize the input reduction more 
than D. 

In summary, the first criterion, namely the similarity of in-
put-output use pattern, is used to refine the benchmarking 
network by grouping IBTs having similar input-output use 
patterns; the second criterion, the proximity of the input-out-
put levels between DMUs, is used to choose IBTs that mini-
mize the input reduction or output increase necessary for im-
proving the evaluated DMU. The following sections detail 
the procedure of the proposed method as well as how the 
proposed two optimization criteria are utilized to construct a 
sequence of stepwise benchmark targets.

4. Benchmarking Network

4.1 Stratified Benchmarking Paths and 
Benchmarking Network

According to the framework of the proposed method, all of 
the DMUs are stratified into several layers according to their 
efficiency scores so that the evaluated DMU can gradually 
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select IBTs. The context-dependent DEA method proposed 
by Seiford and Zhu (2003) is utilized to stratify DMUs. By 
this method, we signify that Jl is the DMU set in the l-th lay-
er and that El is the efficient DMU set in the i-th layer. When 
l = 1, the DMUs in set E1 define the first-level efficient fron-
tier, which might be the most efficient layer. For gradual se-
lection of benchmark targets based on the stratified layers, 
we specify that the evaluated DMU can sequentially select 
IBTs in each layer. For example, the evaluated DMU in E4 
can select its IBT in E3, which is relatively more efficient 
than that in E4, and the evaluated DMU in E3 can select its 
IBT in E2. 

When the above DEA stratification method is applied to 
the supermarket example data in <Table 2>, the following stra-
tification result is obtained : E1 (1-st layer) = {A, B, C}, E2 

(2-nd layer) = {D, E, F}, E3 (3-rd layer) = {G, H}, E4 (4-th 
layer) = {K, I}, and E5 (5-th layer) = {J, L}. Here, the DMUs 
in the 5-th layer can choose IBTs by selecting DMUs sequen-
tially in layers 4, 3, 2, and 1. Because many DMUs can be in-
cluded in each layer, an evaluated DMU can produce multi-
ple stratified benchmarking paths.

To represent these multiple stratified benchmarking paths 
from the evaluated DMU, we define the benchmarking net-
work as follows.

Definition 1 : Benchmarking Network
The benchmarking network of the evaluated DMU is defined 
based on the directed graph, as p = (D, L).

•D =  
    is a DMU set of all Jl.

•L⊆ {ljh = (dj, dh)| dj ∈ El, dh ∈ El-1, j≠ h, l = 2,…, L} is 
a links set, where dj and dh represent the index of the j-th 
DMU and the h-th DMU in D, respectively, and ljh repre-
sents the link between the two DMUs dj and dh. The ele-
ment (dj, dh) represents the fact that dj immediately pre-
cedes dh, which means that dj can benchmark dh.

•dh in ljh indicates that the DMU exists in a layer that is 
more efficient than the layer containing dj.

•dj can be linked to multiple dh, and dh can be linked to 
multiple dj.

Using definition 1 stated above, the benchmarking network 
comprising multiple stratified benchmarking paths, each of 
which consists of a sequence of IBTs selected from each 
layer. If we treat L as the evaluated DMU in the supermarket 
example, the benchmarking network can be illustrated as in 
<Figure 3>. 

Each circle indicates a node that represents the DMUs in 
the layers, and each arc between nodes indicates that the pre-
vious DMU of an arc can benchmark the next DMU of an 
arc. This full-sized benchmarking network includes all of the 
36 possible alternative benchmark target sequences from the 
evaluated DMU (L) to the UBTs (A, B, C). This proposed 
method refines the full-sized benchmarking network by ap-

plying similar input-output use patterns. 

 Figure 3. Benchmarking network of supermarket 
example data of <Table 2>

4.2 Reduced Benchmarking Networks 
For application of the similarity of input-output use pat-

terns, all of the DMUs in the full-sized benchmarking net-
work are classified into several clusters. To that end, note 
that we utilize a method combining a cross-efficiency DEA 
method with a K-means clustering algorithm. The classifica-
tion process is performed in two steps : composition of a DMU 
cross-efficiency matrix using the cross-efficiency DEA meth-
od proposed by Sexton et al. (1986), and classification of 
those DMUs by the K-means clustering algorithm proposed 
by MacQueen (1967). This combined method has been ap-
plied by Doyle and Green (1994) and Talluri (2000). Howev-
er, whereas they classified DMUs to construct layers for the 
benchmark target selection, we apply this combined method 
to consider the similarity of input-output use patterns. Addi-
tionally, we define a new protocol whereby the DMUs that 
are similar in terms of input-output use patterns are classified 
into the same cluster. 

In the first step, the cross-efficiency indicates the efficiency 
score of the DMU under evaluation (hereafter called the tar-
get DMU), according to favorable weights assigned by pair-
wise comparison with other DMUs (hereafter called competi-
tor DMUs) (see Sexton et al. (1986)). A target DMU selects 
optimal weights that maximize its efficiency score and at the 
same time minimize or maximize the competitor DMUs in 
turn. Therefore, a single run of the model with a target DMU 
yields a set of multiple optimal scores; one is for the target 
DMU itself, and the others are for the competitor DMUs. 
Generally, the cross-efficiency DEA method can be separated 
into two models. The first is an aggressive model that aims to 
maximize the efficiencies of all DMU under evaluation as 
well as minimize the cross-efficiencies of the other DMUs. 
The second is a benevolent model that aims to simulta-
neously maximize both the efficiencies of all of the DMUs 
under evaluation and the cross-efficiencies of the other DMUs. 
Because the benevolent model has a drawback, which is its 
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Table 3. Cross-efficiency matrix of supermarket example
Target DMUs

A B C D E F G H I J K L

Competitor 
DMUs

A 1.000 0.500 0.250 0.667 0.500 0.400 0.400 0.333 0.286 0.333 0.333 0.286
B 0.500 1.000 0.500 0.333 0.667 0.800 0.333 0.667 0.571 0.222 0.500 0.286
C 0.250 0.500 1.000 0.167 0.333 0.500 0.167 0.333 0.333 0.111 0.250 0.143
D 1.000 0.500 0.250 0.667 0.500 0.400 0.400 0.334 0.286 0.334 0.334 0.286
E 0.643 0.857 0.429 0.429 0.857 0.686 0.429 0.571 0.490 0.286 0.571 0.367
F 0.462 0.923 0.577 0.308 0.615 0.923 0.308 0.615 0.615 0.205 0.462 0.264
G 0.818 0.681 0.341 0.545 0.681 0.545 0.545 0.454 0.389 0.363 0.454 0.389
H 0.500 1.000 0.500 0.334 0.667 0.800 0.334 0.667 0.572 0.222 0.500 0.286
I 0.474 0.948 0.553 0.316 0.632 0.885 0.316 0.632 0.632 0.211 0.474 0.271
J 0.900 0.600 0.300 0.600 0.600 0.480 0.480 0.400 0.343 0.400 0.400 0.343
K 0.600 0.900 0.450 0.400 0.800 0.720 0.400 0.600 0.514 0.267 0.600 0.343
L 0.751 0.751 0.375 0.501 0.751 0.601 0.501 0.501 0.429 0.334 0.501 0.429

requirement that the efficiency score be raised abnormally, 
we apply one of the aggressive models, specifically the PEG 
(Pairwise Efficiency Game) model proposed by Talluri (2000). 
The PEG model is represented as model (1), where p is the 
target and θpp is the efficiency score of the p-th target DMU 
evaluated by model (2), which is the general DEA model.
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In model (2), ur is the weight given to the r-th output, vi is 
the weight given to the i-th input, n is the number of DMUs, 
s is the number of outputs, m is the number of inputs, k is the 
DMU being measured, yrj is the amount of the r-th output 

produced by DMU j, and xij is the amount of the i-th input 
produced by DMU j, respectively.

The PEG model is repeatedly solved by altering the target 
DMU, resulting in n-1 optimal weights. In the end, each DMU 
will have n-1 optimal cross-efficiency scores given by n-1 tar-
get DMUs along with its own optimal efficiency score. Thus, 
each DMU constructs a cross-efficiency matrix (J×J). Apply-
ing the PEG model to the supermarket example results in the 
cross-efficiency matrix (12×12) listed shown in <Table 3>. 

The cross-efficiency scores of the competitor DMUs vary 
according to the weights of the target DMU. More specifi-
cally, the competitor DMUs that have similar input-output 
use patterns will have similar cross-efficiency scores under 
the same target DMU. For example, the cross-efficiency 
scores of competitor DMUs A and D in <Table 3> are very 
similar, because their input use patterns are the same as noted 
in section 3.1 (the input use pattern of A and B is 1:2, re-
spectively). In another case, we can identify that the cross-ef-
ficiency scores of competitor DMUs B and H, which have 
the same input use pattern, 1:0.5, are also very similar. 

Based on the cross-efficiency matrix, we classify the DMUs 
by applying the K-means clustering algorithm, wherein the 
competitor DMU represents objects to be clustered and the 
cross-efficiency scores are attributes describing the objects. 
In the K-means clustering algorithm, the number of clusters 
is determined by the number of k-centroids. In setting the 
number of k-centroids, we satisfy two conditions: the UBTs 
are distributed evenly in each cluster, and there are no in-
efficient DMUs that have any UBTs in their clusters. 
Because the efficient DMUs in the 1-st layer can be regarded 
as the UBTs of the evaluated DMU, and since these UBTs 
have to be distributed evenly in each cluster and all clusters 
have to include at least one UBT, the number of k-centroids 
cannot be greater than the number of efficient DMUs in the 
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1-st layer. Let kn be the number of k-centroids and en the 
number of efficient DMUs in the 1-st layer; thus, the proce-
dure for setting the number of k-centroids is as follows. 

  Procedure : Setting the number of k-centroids
k = 1;
Do {
   DMU clustering with the number of k-centroids as k;
   k++;
} 
While ((k-en <= 1} or (UBTs cannot be included in any 

cluster));
kn = k-1;

For example, if the number of efficient DMUs in the 1-st 
layer is 4, the number of k-centroids cannot be greater than 4; 
and further, if any cluster does not include any UBTs under 
the 4 k-centroids condition, the number of k-centroids is 3. 
<Figure 4> shows the classified result with the number of 
k-centroids being 3, that is, the same number as the number 
of efficient DMUs in the 1-st layer. A in the 1-st layer is re-
garded as the UBT of J, B is regarded as the UBT of L, and 
the DMUs in each cluster can be considered to be similar in 
their input-output use patterns. As shown in <Figure 4>, we 
can identify that D and G in Cluster 1 are located close to the 
J to A benchmarking direction, and that I, K, J, E and F in 
Cluster 2 are located close to the L to B benchmarking direction.

As emphasized in Section 3.1, consideration of the input- 
output use pattern in selecting IBTs is for the purpose of at 
least limiting (if not perfectly avoiding) the occurrence of the 
zigzagging activity and selecting IBTs suitable for maintain-
ing the established gradational benchmarking strategies and 
implementation plans. 

 Figure 4. Classification result with number of 
k-centroids set at 3

Based on the DMU classification, the benchmarking net-
work can be reduced by first defining the benchmarking can-
didate set, as follows. 

Definition 2 : Benchmarking candidate set (Rl)
The benchmarking candidate set of the l-th layer is defined as 
Rl = {DMUj∈(El

∩Ce) | l = 1, …, L-1}, where El is the DMU 
set in the l-th layer, and Ce is the DMU set in the cluster that 
includes the evaluated DMU. In other words, the benchmark-
ing candidate set is the DMU set in both Ce and El. 

For example, in <Figure 4>, the benchmarking candidate 
sets of L are R1 = {B}, R2 = {E, F}, R3 = {H}, R4 = {K, I}, and 
R5 = {L}. Here, we define that the DMUs in Rl can be re-
garded as the IBTs of the DMUs in Rl+1. In other words, K or 
I in R4 can be regarded as the first IBT of L in R5, and then H 
in R3 can be regarded as the second IBT of both K and I. 
Additionally, E or F in R2 is regarded as the third IBT of H, 
and finally, B in R1 can be regarded as the UBT of both E and 
F. Here, the number of benchmarking steps for an evaluated 
DMU depends on not only the number of layers but also whe-
ther the benchmarking candidate set exists in the l-th layer. 
For example, if there are five layers, and each layer has a 
benchmarking candidate set as shown in <Figure 5>, L has 
four benchmarking steps, whereas if we assume that the 2-nd 
layer (R2) has no benchmarking candidate set, L, by skipping 
the 2-nd layer, has just three benchmarking steps. 

The reduced benchmarking network is constructed by link-
ing the IBTs between Rl and Rl+1 in the benchmarking candi-
date set. In the supermarket example, the reduced bench-
marking network of L is illustrated in <Figure 5>. Here, we 
can see that the reduced benchmarking network is a more 
simplified structure than the benchmarking network. 

Figure 5. Reduced benchmarking network of DMU L

5. Optimal Choice of Benchmarking 
Path

5.1 Alternative Criterion for Choosing 
Sequence of Benchmark Targets

In the previous section, we suggested a benchmarking net-
work comprising multiple stratified benchmarking paths, as 
well as a reduced benchmarking network refined by consid-
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Table 4. Similarity coefficients for each link in reduced benchmarking network
ljh SCjh ljh SCjh ljh SCjh ljh SCjh

d1-d2 (l12) 0.137 d2-d4 (l24) 0.042 d4-d5 (l45) 0.111 d5-d7 (l57) 0.056
d1-d3 (l13) 0.100 d3-d4 (l34) 0.083 d4-d6 (l46) 0.180 d6-d7 (l67) 0.022

eration of the similarity of input-output use patterns. This sec-
tion, then, will discuss how we choose the optimal benchmar-
king path in the reduced benchmarking network. The prox-
imity of the input-output levels between DMUs is considered 
as the second optimization criterion, and a network optimiza-
tion method is applied to determine the optimal benchmark-
ing path. 

As we mentioned earlier, the distance measure is used for 
the proximity of the input-output levels measure by applying 
LDM. The proximity of the input-output use levels between 
DMUs can be calculated by model (3). Compared with the 
LDM, the main difference is that model (3) calculates the 
distance for a real existing unit, not a hypothetical unit. 
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where SCjh represents the similarity coefficient value between 
dj and dh, n is the number of DMUs, s is the number of out-
puts, m is the number of inputs, xij and xih are the amounts of 
the i-th input produced by dj and dh, and yrj and yrh are the 
amounts of the r-th output produced by dj and dh. SCjh has a 
normalized value between 0 and 1. Note that the lower the 
similarity coefficient value, the closer the DMUs are in terms 
of the input and output levels. <Table 4> lists the results of 
SCjh for all ljh in the supermarket example’s reduced bench-
marking network. Based on the SCjh for all ljh, the optimal 
benchmarking path, which maximizes the proximity of the 
input and output levels between DMUs, is selected through 
network optimization. 

5.2 Choice of Optimal Benchmarking Path 
Through Network Optimization

To choose the optimal benchmarking path, we apply the 
method for solving the Shortest Path Problem (SPP), which 
is one of the common network optimization approaches. In 
the SPP approach, we define variable xjh : if dh and dj in ljh are 
able to benchmark each other, then xjh is assigned 1, other-
wise xjh is assigned 0. When SCjh is given to the reduced 
benchmarking network, the construction of the optimal se-
quence of benchmarks can generally be obtained by 0-1 in-
teger programming using model (4). 
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Because, as already noted, a smaller SCjh indicates closer 
values of input and output level, the objective function mini-
mizes the sum of SCjh assigned to xjh. If this model is applied 
to the reduced benchmarking network in the supermarket ex-
ample, the feasible solution is x12 = 1, x13 = 0, x24 = 1, x34 = 0, 
x45 = 0, x46 = 1, x57 = 0, and x67 = 1. Thus, the optimal se-
quence of benchmark targets of L can be selected as d1 → d2
→ d4 → d6 → d7, as shown in <Figure 6>. More specifi-
cally, L can benchmark K as a first stepwise benchmark tar-
get, which can then lead to the sequential benchmarking of 
H, E and B. 

Figure 6. Optimal sequence of DMU L benchmarks

As stressed earlier, most of the previous research relating 
to the stepwise benchmarking method constructed a sequence 
of benchmarks in a myopic (local) way; by contrast, the se-
quence of benchmarks by the proposed method, in <Figure 
6>, is optimal in terms of the overall benchmarking path. For 
better understanding of the difference between these two ap-
proaches, consider the <Figure 6> example. If L selects the 
first IBT between K and I in the partial benchmarking path 
aspect, I will be selected, because the proximity of its in-
put-output uses levels is greater than that of K (the similarity 
coefficient score of I is smaller than that of K). However, 
when L selects H as the second IBT, K will be a more proper 
target than I, because the sum of the similarity coefficients 
for L → K →H is smaller than that for L → I →H (the sum 
of SCjh for L → K →H is 0.179, while for L → I →H it is 
0.183). This result indicates that I is the optimal target of L in 
the partial benchmarking path aspect, but this DMU might 
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(a)

(b) (c)

Figure 7. Optimal benchmarking paths when two UBTs are included in cluster

not be guaranteed to be the optimal target in terms of the 
overall benchmarking path. The choice of I might, in the 
long-term efficiency-improvement perspective, restrict the 
accuracy of stepwise benchmark target selection. To show a 
more definitive difference, we compare the overall bench-
marking paths derived using the myopic approach and the 
proposed optimized approach, respectively. The benchmark-
ing path by the myopic approach and the proposed method 
are constructed as L → I →H → E → B and L → K →H →
E → B, respectively. As a result, the total sum of the sim-
ilarity coefficient scores of the benchmarking path by the 
proposed method (0.349) is smaller than that by the myopic 
approach (0.339). This result also indicates that the proposed 
method can construct a more accurate sequence of bench-
marks than can the myopic approach. 

Since one or more UBTs can be included in a cluster, the 
evaluated DMU can benchmark one or multiple UBTs. Let’s 
look at another example, this one shown in <Figure 7>. In 
<Figure 7>(a), inefficient DMU a has two UBTs (g and h). 
The reduced benchmarking network can be divided into two 
different reduced benchmarking networks according to each 
UBT, and the optimal benchmarking network for each re-
duced benchmarking network can be calculated. The divided 
reduced benchmarking networks according to UBTs g and h, 
and each optimal sequence of benchmarks, a → b → d → e
→ h and a → b → d → f → g, respectively, as shown in <Fi-
gure 7>(b) and <Figure 7>(c). Both benchmark sequences can 
be regarded as optimal benchmarking paths of DMU a. How-
ever, if evaluated DMU a wants to select a more favorable 
sequence of benchmarks in terms of the proximity of in-

put-output uses levels, benchmarking path a → b → d → e
→ h can be selected, because its SCjh sum is less than that of 
a → b → d → f → g.

As is already widely known, the SPP can be solved very 
efficiently. So efficiently in fact, that, from a computational 
point of view, there would be no need to reduce the full-sized 
benchmarking network by using the similarity of input-out-
put use pattern. However, note that, as emphasized in section 
3.2 above, the reason for reducing the full-sized benchmark-
ing network is not to reduce the computation time but rather 
to minimize the occurrence of zigzagging activity in select-
ing IBTs. 

6. Application 

In a case study, we applied our proposed method to national 
universities in South Korea in order to select the optimal 
stepwise benchmarking path of an inefficient university un-
der evaluation. We based it on 2012～2013 data for 23 na-
tional and incorporation universities, excluding educational 
universities, provided by the Ministry of Higher Education in 
Korea (http://www.academyinfo.go.kr). The data reflected 
the following selected performance measures. 

Inputs :
(i) Tuition : Average tuition for all departments in uni-

versity
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Table 5. Descriptive statistics for inputs and outputs used
Resource Unit Max. Min. Avg. Std.Dev.

Inputs
Tuition ￦1,000 6,177.4 3,024.0 4,000.7 708.5 
Student-to-Faculty Person 41.9 15.6 29.1 6.4 

Outputs
Scholarship-to-Student ￦1,000 6,592.4 1,271.1 2,227.1 1,262.9 
Fund-to-Faculty ￦1,000 294,444.5 1,316.0 81,595.7 76,087.8 
Publication-to-Faculty % 100.0 5.0 38.5 29.2 

Table 6. Relative efficiency scores for 23 national universities in South Korea
Univ. No. University Name θ Univ. No. University Name θ

19 Seoul National University 1.00 2 Kangwon National University 0.50

20 Ulsan National Institute of Science and 
Technology 1.00 9 Pukyong National University 0.48

22 Korea Advanced Institute of Science and 
Technology 1.00 5 Kongju National University 0.46

23 Gwangju Institute of Science and Technology 1.00 8 Mokpo National University 0.44
10 Pusan National University 0.88 14 Cheju National University 0.42
4 Gyeongsang National University 0.65 18 Korea Maritime University 0.42
12 Chonnam National University 0.63 11 Andong National University 0.42
3 Kyungpook National University 0.63 6 Kunsan National University 0.36
7 Kumoh National Institute of Technology 0.61 15 Changwon National University 0.32
13 Chonbuk National University 0.60 1 Gangneung-Wonju National University 0.30
16 Chungnam National University 0.58 21 Incheon National University 0.24
17 Chungbuk National University 0.58 　

(ii) Student-to-Faculty : Ratio of full-time-equivalent stu-
dents to full-time-equivalent faculty

Outputs :
(iii) Scholarship-to-Student : Ratio of scholarship money to 

full-time-students
(iv) Fund-to-Faculty : Ratio of secured funding to full-time 

faculty
(v) Publication-to-Faculty : Number of publications to full- 

time faculty

The descriptive statistics of the input and output data and 
the relative efficiency scores for the 23 universities are listed 
in <Table 5> and <Table 6>, respectively.

Assessing the relative efficiency, four universities were de-
termined to be the most efficient (efficiency score = 1), while 
the remaining nineteen universities were determined to be 
inefficient. From the stratification, six layers of the efficient 
frontier were determined. We selected university 21 as the 
evaluated DMU, and set the K-centroids number as 3, ac-
cording to the procedure noted in section 4.2 above. The 
stratification and classification are presented in <Figure 8>, 
and the reduced benchmarking network and similarity co-
efficient results for the DMUs’ proximity of input-output use 
levels are shown in <Figure 9>, respectively. Note that al-

though the universities were stratified into six layers, there 
were only four stepwise benchmarking steps, not five, be-
cause layer 2 did not have any benchmarking candidate set 
for university 21.  

Because the evaluated DMU had two UBTs (universities 
22 and 23), the reduced benchmarking network was divided 
into two different benchmarking networks, and the optimal 
benchmarking paths according to the two UBTs were ob-
tained as shown in <Figure 10>. The benchmarking path in 
<Figure 10>(a) was more favorable in terms of the proximity 
of input-output uses levels, because its SCjh sum was less 
than that of the path shown in <Figure 10>(b).

Next, we conducted a comparative experiment with the 
method proposed by Lim et al. (2011) (hereafter called the 
L-method) to demonstrate the effectiveness of the proposed 
method. The L-method is regarded as a similar approach to 
our method in that it was designed to select the optimal 
benchmarking path considering multiple criteria. However, 
in the strict sense, the L-method is a partial optimal bench-
marking path method because it seeks to select only locally 
optimal targets, not an overall optimal benchmarking path 
method. Accordingly, we compared the sequence of bench-
marks between the L-method and the proposed method in 
terms of both the partial and the overall benchmarking path. 
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Figure 8. Stratification and clustering results for 23 national universities

Figure 9. Reduced benchmarking network and similarity coefficient results

(a) (b)
Figure 10. Two different benchmarking networks and their optimal benchmarking paths

We first constructed the reduced benchmarking networks 
considering the similarity of input-output use patterns, and 
selected the optimal stepwise benchmarking paths that max-

imize the weighted sum of Attractiveness, Progress and Fea-
sibility (APF) scores used in the L-method instead of the 
proximity of the input-output use levels. We selected uni-
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versity 21 as the evaluated DMU, and we assigned the same 
weights as in the case study in (Lim et al., 2011) : 0.45, 0.45 
and 0.1 to Attractiveness, Progress and Feasibility, respec-
tively. The stepwise benchmarking paths by the L-method, 
indicated by the green dotted line, and by the proposed meth-
od, indicated by the red line, are shown in <Figure 11>. The 
weighted sums of the APF scores are indicated in paren-
theses on each arc. In the results of the comparative experi-
ment, the two sequences of universities generated by the 
L-method and the proposed method differed. The L-method 
determined university 1 as the first IBT, which has the max-
imum weighted sum of APF score from university 21, while 
the proposed method determined university 5 as the first IBT, 
which is one part of a sequence of benchmarks maximizing 
the total weighted sum of the APF scores from university 21 
to university 22. The total weighted sum of the APF scores 
from university 21 and university 22 by the L-method and 
the proposed method were determined to be 0.480 and 0.634, 
respectively. This result, showing a larger total weighted sum 
of APF scores by the proposed method, indicates that the 
L-method could not guarantee the optimal benchmarking 
path in the overall benchmarking path aspect, and that the 
benchmarking path by the proposed method was closer to the 
optimal path.  

  Figure 11. Optimal benchmarking paths by 
proposed method and L-method

7. Concluding Remarks

In this paper, we proposed an optimization approach to the 
construction of a sequence of benchmarks in DEA-based 
benchmarking in terms of an overall stepwise benchmarking 
path, in which two optimization criteria are employed: the 
similarity of input-output use patterns, and the proximity of 
input-output use levels between DMUs. We first suggested a 
benchmarking network and a reduced benchmarking network 
considering the similarity of input-output use patterns. Next, 
we suggested a method for selection, by network optimiza-
tion, of the optimal stepwise benchmarking path in the re-
duced benchmarking network, as based on the proximity of 
the input-output use levels between DMUs. The proposed 

method was applied to the determination of the optimal step-
wise benchmarking path for 23 national universities in South 
Korea, and the result was compared with that for the L-me-
thod. We expect that an effective and reliable benchmark tar-
get selection and schedule could be established, because, by 
considering the two optimization criteria, the optimal step-
wise benchmarking path could be selected in terms of the 
overall benchmarking path. 

The proposed methodology, notwithstanding its great utili-
ty, does not consider the number of benchmarking steps nec-
essary for an inefficient DMU to reach the UBT. In an actual 
inefficient organization, the number of benchmarking steps 
can be an important decision factor : if there are too many 
stepwise benchmark targets, the benchmarking task might in-
cur significant practical difficulty for the DMU. Therefore, 
the issue of the number of benchmarking steps as it affects 
the practical utility of stepwise benchmarking will be a focus 
of future research. 
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