DOI QR코드

DOI QR Code

Patient Respiratory Motion Tracking Using Visual Coded Markers

시각 부호화 마커를 이용한 환자의 호흡 추적

  • Wijenayake, Udaya (School of Computer Science and Engineering, Kyungpook National University) ;
  • Park, Soon-Yong (School of Computer Science and Engineering, Kyungpook National University)
  • Received : 2014.06.18
  • Accepted : 2014.11.25
  • Published : 2014.12.25

Abstract

As radiotherapy has become one of the widely used techniques in cancer treatment, accurate tracking of patient's respiratory motion is considered to be more important in treatment planning and dose calculations. Inaccurate motion tracking can cause severe issues such as errors in target/normal tissue delineation and increasing the volume of healthy tissues exposed to high doses. Different methods have been introduced to estimate the respiratory motion, but most of them require some electronic devices or expensive materials. As an inexpensive and easy to use alternative to the previous methods, we propose a new 3D respiratory motion tracking method by using stereo vision techniques of detecting and decoding visual coded markers.

방사선요법이 암의 치료에 널리 사용되는 방법 중의 하나가 되면서 호흡에 의한 환자 움직임의 정확한 추적은 치료 계획이나 조사량 계산에 있어 매우 중요한 요소가 되고 있다. 호흡에 의한 움직임의 부정확한 추적은 일반 조직의 오류나 높은 준위의 방사선에 노출되는 건강한 조직의 범위를 확대시키는 심각한 논란을 야기할 수 있다. 다양한 호흡 예측에 대한 기술이 연구가 되었지만, 대부분의 기술들은 특정 전자장치나 고가의 부품을 필요로 하였다. 본 논문에서는 기존의 기술에 비하여 저가이고 사용이 간편한 대안으로서 스테레오 비전 기술을 이용하여 시각 코드 타겟을 추출하고 복호화하여 새로운 3차원 호흡 추적 방법을 제안한다.

Keywords

References

  1. P.J. Keall, G.S. Mageras, J.M. Balter, R.S. Emery, K.M. Forster, S.B. Jiang, et al, The management of respiratory motion in radiation oncology report of AAPM Task Group 76, Med.Phys. 33 (2006) 3874-3900. https://doi.org/10.1118/1.2349696
  2. C. Saw, E. Brandner, R. Selvaraj, H. Chen, M.S. Huq, D. Heron, A review on the clinical implementation of respiratory-gated radiation therapy, Biomed. Imaging Intervention J. 3 (1) (2007) e40.
  3. T.R. Willoughby, P.A. Kupelian, J. Pouliot, K. Shinohara, M. Aubin, M. Roach III, et al, Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer, Int. J. Radiat. Oncol. Biol. Phys. 65 (2) (2006) 528-534. https://doi.org/10.1016/j.ijrobp.2006.01.050
  4. J. Jin, F. Yin, S.E. Tenn, P.M. Medin, T.D. Solberg, Use of the BrainLAB ExacTrac X-Ray 6D system in image-guided radiotherapy, Med. Dosim. 33 (2) (2008) 124-134. https://doi.org/10.1016/j.meddos.2008.02.005
  5. Y. Seppenwoolde, R.I. Berbeco, S. Nishioka, H. Shirato, B. Heijmen, Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study, Med.Phys. 34 (2007) 2774- 2784. https://doi.org/10.1118/1.2739811
  6. ARToolKit, http://www.hitl.washington.edu/artool kit/.
  7. M. Appel, N. Navab, Registration of technical drawings and calibrated images for industrial augmented reality, Mach. Vis. Appl. 13 (3) (2002) 111-118. https://doi.org/10.1007/s001380100066
  8. X. Zhang, Y. Genc, N. Navab, Taking AR into large scale industrial environments: Navigation and information access with mobile computers, IEEE and ACM International Symposium on Augmented Reality. (2001) 179-180.
  9. L. Naimark, E. Foxlin, Circular data matrix fiducial system and robust image processing for a wearable vision-inertial self-tracker, Proceedings of the 1st International Symposium on Mixed and Augmented Reality. (2002) 27-36.
  10. M. Rohs, Real-world interaction with camera phones, Ubiquitous Computing Systems. (2005) 74-89.
  11. X. Zhang, S. Fronz, N. Navab, Visual marker detection and decoding in AR systems: A comparative study, Proceedings of the 1st International Symposium on Mixed and Augmented Reality. (2002) 97-106.
  12. M. Fiala, ARTag, a fiducial marker system using digital techniques, Computer Vision and Pattern Recognition. (2005) 590-596.
  13. R. Hartley, A. Zisserman, Multiple view geometry in computer vision, Cambridge Univ. Press. (2000).
  14. Z. Zhang, A flexible new technique for camera calibration, IEEE Trans. Pattern Anal. Mach. Intell. 22 (11) (2000) 1330-1334. https://doi.org/10.1109/34.888718
  15. N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Trans. Syst. Man. Cybern.9 (1) (1979) 62-66. https://doi.org/10.1109/TSMC.1979.4310076
  16. R. Gonzales, R. Woods, Digital Image Processing, Pearson Education, (2009).
  17. D. Douglas, T. Peucker, Algorithms for the reduction of the number of points required to represent a digitized line or its caricature, Canadian Cartographer. 10 (2) (1973) 112-122. https://doi.org/10.3138/FM57-6770-U75U-7727
  18. J. Matney, B. Parker, D. Neck, G. Henkelmann, I. Rosen, Target localization accuracy in a respiratory phantom using BrainLab ExacTrac and 4DCT imaging, J. Appl. Clin. Med. Phys. 12 (2) (2011).