DOI QR코드

DOI QR Code

Effects of alloying elements on the mechanical and high temperature corrosion properties of solid-solution hardening nickel-base alloy

Ni-Cr계 고용강화형 합금에서 조성에 따른 기계적 및 고온부식 특성 평가

  • Jung, Sujin (Nuclear Materials Safety Division, Korea Atomic Energy Research Institute) ;
  • Kim, Dong-Jin (Nuclear Materials Safety Division, Korea Atomic Energy Research Institute)
  • 정수진 (한국원자력연구원 원자력재료안전연구부) ;
  • 김동진 (한국원자력연구원 원자력재료안전연구부)
  • Received : 2014.06.12
  • Accepted : 2014.10.27
  • Published : 2014.10.31

Abstract

Alloy 617 is considered as a candidate Ni-based superalloy for the intermediate heat exchanger (IHX) of a very high-temperature gas reactor (VHTR) because of its good creep strength and corrosion resistance at high temperatures. Helium is used as a coolant in a VHTR owing to its high thermal conductivity, inertness, and low neutron absorption. However, helium inevitably includes impurities that create an imbalance in the surface reactivity at the interface of the coolant and the exposed materials. As the Alloy 617 has been exposed to high temperatures at $950^{\circ}C$ in the impure helium environment of a VHTR, the degradation of material is accelerated and mechanical properties decreased. The high-temperature strength, creep, and corrosion properties of the structural material for an IHX are highly important to maintain the integrity in a harsh environment for a 60 year period. Therefore, an alloy superior to alloy 617 should be developed. In this study, the mechanical and high-temperature corrosion properties for Ni-Cr alloys fabricated in the laboratory were evaluated as a function of the grain boundary strengthening and alloying elements. The ductility increased and decreased by increasing the amount of Mo and Cr, respectively. Surface oxide was detached during the corrosion test, when Al was not added to alloy. However the alloy with Al showed improved oxide adhesive property without significant degradation and mechanical property. Aluminum seems to act as an anti-corrosive role in the Ni-based alloy.

Keywords

References

  1. R. Elder, R. Allen, Prog. Nucl. Energy, 51, 500 (2009). https://doi.org/10.1016/j.pnucene.2008.11.001
  2. T. Hirano, M. Okada, H. Araki, T. Noda, H. Yoshida and R. Watanabe, Metall. Trans. A. 12, 451 (1981). https://doi.org/10.1007/BF02648542
  3. W. Ren and R. Swimdeman, J. Pressure Vessel Technol. 131, 024002 (2009). https://doi.org/10.1115/1.2967885
  4. Special Metals Publication, Number SMC-029, Alloy 617, (2005).
  5. Y. Hosoi and S. Abe, Metall. Trans. 6A, 1171 (1975).
  6. M. R. Quadakkers, Werkst. Korro., 36, 335 (1984).
  7. H.-J. Christ, U. Kunecke, K. Meyer and G. Sockel, Mater. Sci. Eng., 87, 161 (1987). https://doi.org/10.1016/0025-5416(87)90374-0
  8. F. Rouillard, C. Cabet, K. Wolski, A. Terlain, M. Tabarant, M. Pijolat and F. Valdivieso, J. Nucl. Mater., 362, 248 (2007). https://doi.org/10.1016/j.jnucmat.2007.01.049
  9. P. S. Shankar and K. Natesan, J. Nucl. Mater., 366, 28 (2007). https://doi.org/10.1016/j.jnucmat.2006.12.028
  10. W. Kim, S. Yin, G. Lee, Y. Kim and S. Kim, Int. J. of PVP., 87, 289-295 (2010).
  11. C. Jang, D. Lee and D. Kim, Int. J. Press. Vessels., 85, 368 (2008). https://doi.org/10.1016/j.ijpvp.2007.11.010
  12. T. S. Jo, S.-H. Kim, D.-G. Kim, J. Y. Park and Y. D. Kim, Met. Mater. Int., 14, 739 (2008). https://doi.org/10.3365/met.mat.2008.12.739
  13. D. Kim, C. Jang and W. S. Ryu, Oxid. Met. 71, 271 (2009). https://doi.org/10.1007/s11085-009-9142-5
  14. D.-J. Kim, G.-G. Lee, S. W. Kim and H. P. Kim, Corros. Sci. Tech., 9, 164 (2010).
  15. D.-J. Kim, G.-G. Lee, S. J. Jeong, W.-G. Kim and J. Y. Park, Nucl. Eng. Technol., 43, 429 (2011). https://doi.org/10.5516/NET.2011.43.5.429
  16. S. J. Jung, G.-G. Lee, D.-J. Kim and D. J. Kim, Corros. Sci. Tech., 12, 102 (2013). https://doi.org/10.14773/cst.2013.12.2.102
  17. P. J. Ennis, W. J. Quadakkers and H. Schuster, Journal De physique VI. 3, 979 (1993).
  18. R. C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press (2006).
  19. H. L. Blaine Geddes Xiao Huang, Superalloys: Alloying and performance (2010).
  20. A. W. Cochardt, U.S.Patent No.3, 512. 963.
  21. W. J. Pennington, Met. Progress., 73, 82 (1958).
  22. R. F. Decker and J. W. Freeman, Trans. AIME. 218, 227 (1960).
  23. H. Nagano, K. Yamanaka, T. Minami, and M. Inoue, proceedings: workshop on thermally treated alloy 690 tubes for nuclear steam generator (1986).
  24. T. Takasugi and O. Izumi, Acta Met., 33, 1247 (1985). https://doi.org/10.1016/0001-6160(85)90236-6
  25. J. C. Jung, K. S. Yun, B. S. Yang, S. K. Ko and C. W. Won, J. of the Korean lnst. of Met. & Mater., 7, 841 (1997).
  26. G.R. Wallwork and A.Z. Hed, Oxidation of Metals, 3, 171 (1971). https://doi.org/10.1007/BF00603485