DOI QR코드

DOI QR Code

Survival of Bacillus cereus and Its Transfer from Agricultural Product-Contact Surfaces to Lettuce

Bacillus cereus의 농산물 접촉 표면 재질별 생존력 및 상추로의 교차오염도 조사

  • Kim, Se-Ri (Microbial Safety Team Department of Crop-Life Safety, NAAS, RDA) ;
  • Seo, Min-Kyoung (Department of Food Science and Technology, Chung-Ang University) ;
  • Kim, Won-Il (Microbial Safety Team Department of Crop-Life Safety, NAAS, RDA) ;
  • Ryu, Kyoung Yul (R&D Evaluation Division, Research Policy Bureau, RDA) ;
  • Kim, Byung-Seok (Planning & Coordination Division, NAAS, RDA) ;
  • Ryu, Jae-Gee (Microbial Safety Team Department of Crop-Life Safety, NAAS, RDA) ;
  • Kim, Hwang-Yong (Microbial Safety Team Department of Crop-Life Safety, NAAS, RDA)
  • 김세리 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀) ;
  • 서민경 (중앙대학교 식품공학과) ;
  • 김원일 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀) ;
  • 류경열 (농촌진흥청 연구정책국 연구성과관리과) ;
  • 김병석 (농촌진흥청 국립농업과학원 기획조정과) ;
  • 류재기 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀) ;
  • 김황용 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀)
  • Received : 2014.07.04
  • Accepted : 2014.09.29
  • Published : 2014.12.31

Abstract

This study was conducted to investigate survival of Bacillus cereus (B. cereus) on stainless steel and polyvinyl chloride (PVC) and its transfer from two material to lettuce. The stainless steel and PVC were innoculated with B. cereus and stored at 6 combination conditions (temperature : $20^{\circ}C$ and $30^{\circ}C$, relative humidity (RH) : 43%, 69%, and 100%). Although the total numbers of B. cereus at RH 43% and RH 69% were reduced by 3.53-4.00 log CFU/coupon within 24 h regardless of material type, the spore numbers of B. cereus was lasted at 3.0 log CFU/coupon. When two materials were stored at $30^{\circ}C$, RH 100%, the spore numbers of B. cereus was rapidly increased by 3.0 log CFU/coupon. In addition, the reduction rate of B. cereus was decreased in the presence of organic matter. Transfer rate of B. cereus from surface of stainless steel and PVC to lettuce was increased by 10 times in the presence of water on the lettuce surface. As a result of this study, the presence of B. cereus on produce contact surfaces can increase the risk of cross-contamination. Thus, it is important that the packing table and conveyer belt in post harvest facility should be properly washed and sanitized after working to prevent cross-contamination.

본 연구는 polyvinyl chlroride (PVC)와 stainless steel 표면에서 B. cereus의 온 습도에 따른 생존율을 조사하고, B. cereus이 오염된 작업대 표면에서 상추로의 교차오염도 조사를 통하여 B. cereus에 오염된 작업대가 상추의 미생물학적 안전성에 미치는 영향을 평가하고자 수행하였다. 작업대 재질별 B. cereus의 생존은 온도 $20^{\circ}C$, $30^{\circ}C$, 습도 43%, 69%, 100%에서 각각 노출 시켰을 때, 습도 43%, 69% 조건에서 24시간 이내에 전체 세포수는 약 3.53~4.00 log CFU/coupon이 감소한데 반해 포자수는 약 3.00 log CFU/coupon 수준을 일정하게 유지하였다. 한편 온도 $30^{\circ}C$, 상대습도 100%에서는 노출 12시간 후에 포자수가 2.29~2.59 log CFU/coupon정도 증가하였다. 유기물이 작업대 표면에 존재 시, B. cereus의 감소 속도가 느렸다. B. cereus에 오염된 작업대에 상추를 접촉시키고 상추의 오염도를 조사한 결과, 상추 표면에 수분이 존재할 때 B. cereus오염된 작업대 표면에서 B. cereus의 이동수준이 상추에 수분이 없을 때 보다 10배 이상 증가하는 것으로 나타났다. 따라서 B. cereus에 오염된 작업대는 상추의 안전성에 직접적인 영향을 미칠 수 있어 작업 후에 세척, 소독을 통하여 작업대를 위생적으로 관리하는 것이 필요하다.

Keywords

References

  1. Kim, G.H., Bang, H.Y.: A survey on consumption pattern of minimally fruits and vegetables. Korean J. Food Culture, 13, 267-274 (1998).
  2. Choi, J.W., Park, S.Y., Yeon, J.H., Lee, M.J., Chung, D.H., Lee, K.H., Kim, M.G., Lee, D.H., Kim, K.S., Ha, S.D.: Microbial contamination levels of fresh vegetables distributed in markets. Korean J. Fd. Hyg. Safety, 20, 43-47 (2005).
  3. Food and Drug Administration: Guidance for Industry: Guide to Minimize Microbial Food Safety Hazards of Leafy Greens; Draft Guidance. Available from: http://www.fda.gov. Accessed Oct. 26. 2012 (2005).
  4. Centers for Disease Control and Prevention: Update on Multi-State Outbreak of E. coli O157:H7 Infections from Fresh Spinach, October 6, 2006. Available from: http://www.cdc.gov/ecoli/2006/september/updates/100606.html. Accessed Febrary 20, 2010 (2006).
  5. Patel, J., Sharma. M.: Differences in attachment of Salmonella enteric serovars to cabbage and lettuce leaves. Int. J. Food Microbiol., 139, 41-47 (2010). https://doi.org/10.1016/j.ijfoodmicro.2010.02.005
  6. Nam S.W. 2010. Industrial efforts for enhancing food safety and suggestion to improve policy, p. 9. Prime Minister's Office. Workshop for food safety policy committee. Prime Minister's Office, Seoul, Korea.
  7. Burnett, S.L., Beuchat, L.R.: Human pathogens associated with raw produce and unpasteurized juices and difficulties in decontamination. J. Ind. Microbiol Biotechnol., 27, 104-110 (2001). https://doi.org/10.1038/sj.jim.7000199
  8. Kim, S.H., Kim, J.S., Choi, J.P., Park. J.H.: Prevalence and frequency of food-borne pathogens on unprocessed agricultural and marine products. Korean J. Food Sci. Technol., 38, 594-598 (2006).
  9. Choo, E.Y, Jang, S.S. Kim, K.S., Lee, K.G., Heu, S., Ryu, S.R.: Prevalence and genetic diversity of Bacillus cereus in dried red pepper in Korea. J. Food Prot. 70, 917-922 (2007).
  10. Kim, H.J., Lee, D.S., Paik, H.D.: Characterization of Bacillus cereus isolated from raw soybean sprouts. J. Food Prot., 67, 1031-1035 (2004).
  11. Hansen, B.M., Laser, T.D., Hendriksen, N.B.: Polymerase chain reaction assay for the detection of Bacillus cereus group cells. FEMS Microbiol. Lett., 202, 209-213 (2001). https://doi.org/10.1111/j.1574-6968.2001.tb10805.x
  12. Anderson Borge G.I., Skeie, M., Sorhaug, T., Langsrud, T., Granum, P.E.: Growth and toxin profiles of Bacillus cereus isolated from different food sources. Int. J. Food Microbiol., 69, 237-246 (2001). https://doi.org/10.1016/S0168-1605(01)00500-1
  13. Phelps, R.J., McKillip, J.L.: Enterotoxin production in natural isolates of Bacillaceae outside the Bacillus cereus group. Appl. Environ. Microbiol., 68, 3147-3151 (2002). https://doi.org/10.1128/AEM.68.6.3147-3151.2002
  14. Kramer, J.M., Gillbert R.J.: Bacillus cereus and other Bacillus species. p. 21-70. In: Doyle(ed). Food-borne bacterial pathogens. MP. Marcel Dekker, New York, NY, USA. (1989).
  15. Kim S.R., Lee, J.Y., Lee, S.H., Kim, W.I., Park, K.H., Yun, H.J., Kim, B.S., Chung, D.H., Yun, J.C. and Ryu, K.Y.: Evaluation of microbiological safety of lettuce and cultivation area. Korean J. Fd. Hyg. Safety, 26, 289-295 (2011).
  16. Chai, L.C., Lee, H.Y., Ghazali, F.M., Bakar, F.A., Malakar, P.K., Nishibuchi, M., Nakaguchi, Y., Radu, S.: Simulation of cross-contamination and decontamination of Campylobacter jejuni during handling of contaminated raw vegetables in a domestic kitchen. J. Food Prot., 71, 2448-2452 (2008).
  17. Ailes, E.C., Leon, J.S., Jaykus, L.A., Johnston, L.M., Clayton, H.A., Blanding, S., Kleinbaum, D.G. Backer, L.C., Moe, C.L.: Microbial concentrations on fresh produce are affected by postharvest processing, importation, and season. J. Food Prot., 71, 2389-2397 (2008).
  18. Bae, Y.M., Heu, S., Lee, S.Y.: Inhibitory effect of dry-heat treatment and chemical sanitizers against foodborne pathogens contaminated on the surfaces of materials. J. Korean Soc Food SCi. Nutr., 38, 1265-1270 (2009). https://doi.org/10.3746/jkfn.2009.38.9.1265
  19. Ryu, J.H., Kim, H., Beuchat, L.R.: Biofilm formation and sporulation by Bacillus cereus on stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer. J. Food Prot., 68, 2614-2622 (2005).
  20. Park, E.J., Alexander, E., Taylor, G.A., Costa, R., Kang, D.H.: The decontaminative effects of acidic electrolyzed water for Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on green onions and tomatoes with different organic demands. Food Microbiol., 26, 386-390 (2009). https://doi.org/10.1016/j.fm.2008.10.013
  21. Eugenie, B., Louis C., Olivier, C., Mohammed, E.J., Ivan, L., Florence, P. Christophe, B., Frederic, C., Pierre, M.: Sporulation boundaries and spore formation kinetics of Bacillus spp. as a function of temperature, pH and aw. Food Microbiol., 32, 79-86 (2012). https://doi.org/10.1016/j.fm.2012.04.011
  22. Takahashi, H., Kuramoto, S., Miya, S., Kimura, B.: Desiccation survival of Listeria monocytogenes and other potential foodborne pathogens on stainless steel surface is affected by different food soils. Food Control, 22, 633-637 (2011). https://doi.org/10.1016/j.foodcont.2010.09.003
  23. Kusumaningrum H.D., Riboldi G., Hazeleger, W.C., Beumer, R.R.: Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods. Int. J. Food Microbiol., 85, 227-236 (2003). https://doi.org/10.1016/S0168-1605(02)00540-8
  24. Kusumaningrum, H.D., van Asselt, E.D., Beumer, R.R., Zwietering, M.H.: A quantitative analysis of cross-contamination of Salmonella and Campylobacter spp. via Domestic kitchen surfaces. J. Food Prot., 67, 1892-1903 (2004).
  25. Silagyi, K., Kim, S.H., Lo, Y.M, Wei. C.: Production of biofilm and quorum sensing by Escherichia coli O157:H7 and its transfer from contact surface to meat, poultry, ready-to-eat deli, and produce products. Food Microbiol., 26, 514-519 (2009). https://doi.org/10.1016/j.fm.2009.03.004