References
- Ahmad, S., Irons, B.M. and Zienkiewicz, O.C. (1970), "Analysis of thick and thin shell structures by curved finite elements", Int. J. Numer. Methods Eng., 2(3), 419-451. https://doi.org/10.1002/nme.1620020310
- Almroth, B.O. and Brogan, F.A. (1978), The STAGS Computer Code, NASA CR-2950.
- Bathe, K.J. (1996), Finite Element Procedure, Prentice-Hall of India Private Ltd., New Delhi, India.
- Cetkovic, M. and Vuksanovic, Dj. (2011a), "Large deflection analysis of laminated composite plates using layerwise displacement model", Struct. Eng. Mech., Int. J., 40(2), 257-277. https://doi.org/10.12989/sem.2011.40.2.257
- Cetkovic, M and Vuksanovic, Dj. (2011b), "Geometric nonlinear analysis of laminated composite plates using layerwise displacement model", J. Serb. Soc. Comput. Mech., 5(1), 50-68.
- Chattopadhyay, B., Sinha, P.K. and Mukhopadhyay, M. (1995), "Geometrically nonlinear analysis of composite stiffened plates using finite elements", Compos. Struct., 31(2), 107-118. https://doi.org/10.1016/0263-8223(95)00004-6
- Chia, C.Y. (1988), "Geometrically nonlinear behaviour of composite plates - A review", Appl. Mech. Rev., 41(12), 439-450. https://doi.org/10.1115/1.3151873
- Dash, P. and Singh, B.N. (2010), "Geometrically nonlinear bending analysis of laminated composite plate", Comm. Nonlin. Sci Num. Sim., 15(10), 3170-3181. https://doi.org/10.1016/j.cnsns.2009.11.017
- Ferguson, G.H. and Clark, R.D. (1979), "A variable thickness curved beam and shell stiffener with sheat deformation", Int. J. Num. Met. Eng., 14, 581-592. https://doi.org/10.1002/nme.1620140409
- Goswami, S. and Mukhopadhyay, M. (1995), "Geometrically nonlinear analysis of laminated composite stiffened shells", J. Reinforced Plast. Compos., 14(12), 1317-1336. https://doi.org/10.1177/073168449501401205
- Hyer, M.W., Loap, D.C. and Starnes, J.H. (1990), "Stiffener/skin interactions in pressure-loaded composite panels", AIAA J., 28(3), 532-537. https://doi.org/10.2514/3.10424
- Koko, T.S. and Olson, M.D. (1991), "Non-linear analysis of stiffened plates using super elements", Int. J. Numer. Methods Eng., 31(2), 319-343. https://doi.org/10.1002/nme.1620310208
- Kolli, M. and Chandrashekhara, K. (1997), "Nonlinear Static and dynamic analysis of stiffened laminated plates", Int. J. Non-Linear Mech., 32(1), 89-101. https://doi.org/10.1016/S0020-7462(96)00016-9
- Liao, C.L. and Reddy, J.N. (1990), "Analysis of anisotropic stiffened composite laminates using a continuum-based shell element", Comput. Struct., 34(6), 805-815. https://doi.org/10.1016/0045-7949(90)90351-2
- Mukhopadhyay, M. and Satsangi, S.K. (1984), "Isoparametric stiffened plate bending element for the analysis of ships' structures", Trans. RINA, 126, 144-151.
- Ojeda, R., Prusty, B.G., Lawrence, N. and Thomas, G. (2007), "A new approach for the large deflection finite element analysis of isotropic and composite plates with arbitrary orientated stiffeners", Finite Elem. Anal. Des., 43(13), 989-1002. https://doi.org/10.1016/j.finel.2007.06.007
- Paik, J.K. and Lee, M.S. (2005), "A semi-analytical method for the elastic-plastic large deflection analysis of stiffened panels under combined biaxial compression/tension, biaxial in-plane bending, edge shear, and lateral pressure loads", Thin-Wall. Struct., 43(3), 375-410. https://doi.org/10.1016/j.tws.2004.07.022
- Polat, C. and Ulucan, Z. (2007), "Geometrically non-linear analysis of axisymmetric plates and shells", Int. J. Sci. Technol., 2(1), 33-40.
- Rao, J.S. (1999), Dynamics of Plates, Narosa Publishing House, New Delhi, India.
- Rao, D.V., Sheikh, A.H. and Mukhopadhyay, M. (1993), "A finite element large displacement analysis of stiffened plates", Comput. Struct., 47(6), 987-993. https://doi.org/10.1016/0045-7949(93)90303-U
- Sapountzakis, E.J. and Dikaros, I.C. (2012a), "Large deflection analysis of plates stiffened by parallel beams with deformable connection", J. Eng. Mech., ASCE, 138(8), 1021-1041. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000402
- Sapountzakis, E.J. and Dikaros, I.C. (2012b), "Large deflection analysis of plates stiffened by parallel beams", Eng. Struct., 35, 254-271. https://doi.org/10.1016/j.engstruct.2011.11.008
- Sheikh, A.H. and Mukhopadhyay, M. (2000), "Geometric nonlinear analysis of stiffened plates by the spline finite strip method", Comput. Struct., 76(6), 765-785. https://doi.org/10.1016/S0045-7949(99)00191-1
- Timoshenko, S.P. and Goodier, J.M. (1951), Theory of Elasticity, McGraw-Hill, Kogakusha.
- Turvey, G.J. (1983), "Axisymmetric elastic large deflection behaviour of stiffened composite plates", Compos. Struct. 2, 72-88.
- Wood, R.D. and Schrefler, B. (1978), "Geometrically nonlinear analysis-a correlation of finite element methods", Int. J. Numer. Methods Eng., 12(4), 635-642. https://doi.org/10.1002/nme.1620120408
- Zhang, Y.X. and Kim, K.S. (2006), "Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate elements", Compos. Struct., 72(3), 301-310. https://doi.org/10.1016/j.compstruct.2005.01.001
- Zienkiewicz, O.C. (1977), The Finite Element Method, Tata Mc-Graw Hill Publishing Company Ltd., New Delhi, India.
Cited by
- Experimental study on compressive behavior of GFRP stiffened panels using digital image correlation vol.114, 2016, https://doi.org/10.1016/j.oceaneng.2016.01.034
- Examination of non-homogeneity and lamination scheme effects on deflections and stresses of laminated composite plates vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.603
- Post-buckling responses of a laminated composite beam vol.26, pp.6, 2014, https://doi.org/10.12989/scs.2018.26.6.733
- Geometrically nonlinear analysis of a laminated composite beam vol.66, pp.1, 2014, https://doi.org/10.12989/sem.2018.66.1.027
- Large deflection analysis of a fiber reinforced composite beam vol.27, pp.5, 2014, https://doi.org/10.12989/scs.2018.27.5.567
- Thermal post-buckling analysis of a laminated composite beam vol.67, pp.4, 2018, https://doi.org/10.12989/sem.2018.67.4.337
- Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods vol.29, pp.6, 2018, https://doi.org/10.12989/scs.2018.29.6.785
- Geometric Nonlinear Analysis of Composite Stiffened Panels Using Variational Asymptotic Method vol.58, pp.9, 2020, https://doi.org/10.2514/1.j058963
- A numerical study on nonlinear bending performance of transversely loaded composite singly curved stiffened surfaces vol.56, pp.7, 2014, https://doi.org/10.1177/0309324720977415
- A numerical study on nonlinear vibrations of laminated composite singly curved stiffened shells vol.278, pp.None, 2021, https://doi.org/10.1016/j.compstruct.2021.114718