DOI QR코드

DOI QR Code

Nonlinear bending analysis of laminated composite stiffened plates

  • Patel, Shuvendu N. (Department of Civil Engineering, BITS Pilani, Pilani Campus)
  • Received : 2013.11.11
  • Accepted : 2014.08.23
  • Published : 2014.12.25

Abstract

This paper deals with the geometric nonlinear bending analysis of laminated composite stiffened plates subjected to uniform transverse loading. The eight-noded degenerated shell element and three-noded degenerated curved beam element with five degrees of freedom per node are adopted in the present analysis to model the plate and stiffeners respectively. The Green-Lagrange strain displacement relationship is adopted and the total Lagrangian approach is taken in the formulation. The convergence study of the present formulation is carried out first and the results are compared with the results published in the literature. The stiffener element is reformulated taking the torsional rigidity in an efficient manner. The effects of lamination angle, depth of stiffener and number of layers, on the bending response of the composite stiffened plates are considered and the results are discussed.

Keywords

References

  1. Ahmad, S., Irons, B.M. and Zienkiewicz, O.C. (1970), "Analysis of thick and thin shell structures by curved finite elements", Int. J. Numer. Methods Eng., 2(3), 419-451. https://doi.org/10.1002/nme.1620020310
  2. Almroth, B.O. and Brogan, F.A. (1978), The STAGS Computer Code, NASA CR-2950.
  3. Bathe, K.J. (1996), Finite Element Procedure, Prentice-Hall of India Private Ltd., New Delhi, India.
  4. Cetkovic, M. and Vuksanovic, Dj. (2011a), "Large deflection analysis of laminated composite plates using layerwise displacement model", Struct. Eng. Mech., Int. J., 40(2), 257-277. https://doi.org/10.12989/sem.2011.40.2.257
  5. Cetkovic, M and Vuksanovic, Dj. (2011b), "Geometric nonlinear analysis of laminated composite plates using layerwise displacement model", J. Serb. Soc. Comput. Mech., 5(1), 50-68.
  6. Chattopadhyay, B., Sinha, P.K. and Mukhopadhyay, M. (1995), "Geometrically nonlinear analysis of composite stiffened plates using finite elements", Compos. Struct., 31(2), 107-118. https://doi.org/10.1016/0263-8223(95)00004-6
  7. Chia, C.Y. (1988), "Geometrically nonlinear behaviour of composite plates - A review", Appl. Mech. Rev., 41(12), 439-450. https://doi.org/10.1115/1.3151873
  8. Dash, P. and Singh, B.N. (2010), "Geometrically nonlinear bending analysis of laminated composite plate", Comm. Nonlin. Sci Num. Sim., 15(10), 3170-3181. https://doi.org/10.1016/j.cnsns.2009.11.017
  9. Ferguson, G.H. and Clark, R.D. (1979), "A variable thickness curved beam and shell stiffener with sheat deformation", Int. J. Num. Met. Eng., 14, 581-592. https://doi.org/10.1002/nme.1620140409
  10. Goswami, S. and Mukhopadhyay, M. (1995), "Geometrically nonlinear analysis of laminated composite stiffened shells", J. Reinforced Plast. Compos., 14(12), 1317-1336. https://doi.org/10.1177/073168449501401205
  11. Hyer, M.W., Loap, D.C. and Starnes, J.H. (1990), "Stiffener/skin interactions in pressure-loaded composite panels", AIAA J., 28(3), 532-537. https://doi.org/10.2514/3.10424
  12. Koko, T.S. and Olson, M.D. (1991), "Non-linear analysis of stiffened plates using super elements", Int. J. Numer. Methods Eng., 31(2), 319-343. https://doi.org/10.1002/nme.1620310208
  13. Kolli, M. and Chandrashekhara, K. (1997), "Nonlinear Static and dynamic analysis of stiffened laminated plates", Int. J. Non-Linear Mech., 32(1), 89-101. https://doi.org/10.1016/S0020-7462(96)00016-9
  14. Liao, C.L. and Reddy, J.N. (1990), "Analysis of anisotropic stiffened composite laminates using a continuum-based shell element", Comput. Struct., 34(6), 805-815. https://doi.org/10.1016/0045-7949(90)90351-2
  15. Mukhopadhyay, M. and Satsangi, S.K. (1984), "Isoparametric stiffened plate bending element for the analysis of ships' structures", Trans. RINA, 126, 144-151.
  16. Ojeda, R., Prusty, B.G., Lawrence, N. and Thomas, G. (2007), "A new approach for the large deflection finite element analysis of isotropic and composite plates with arbitrary orientated stiffeners", Finite Elem. Anal. Des., 43(13), 989-1002. https://doi.org/10.1016/j.finel.2007.06.007
  17. Paik, J.K. and Lee, M.S. (2005), "A semi-analytical method for the elastic-plastic large deflection analysis of stiffened panels under combined biaxial compression/tension, biaxial in-plane bending, edge shear, and lateral pressure loads", Thin-Wall. Struct., 43(3), 375-410. https://doi.org/10.1016/j.tws.2004.07.022
  18. Polat, C. and Ulucan, Z. (2007), "Geometrically non-linear analysis of axisymmetric plates and shells", Int. J. Sci. Technol., 2(1), 33-40.
  19. Rao, J.S. (1999), Dynamics of Plates, Narosa Publishing House, New Delhi, India.
  20. Rao, D.V., Sheikh, A.H. and Mukhopadhyay, M. (1993), "A finite element large displacement analysis of stiffened plates", Comput. Struct., 47(6), 987-993. https://doi.org/10.1016/0045-7949(93)90303-U
  21. Sapountzakis, E.J. and Dikaros, I.C. (2012a), "Large deflection analysis of plates stiffened by parallel beams with deformable connection", J. Eng. Mech., ASCE, 138(8), 1021-1041. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000402
  22. Sapountzakis, E.J. and Dikaros, I.C. (2012b), "Large deflection analysis of plates stiffened by parallel beams", Eng. Struct., 35, 254-271. https://doi.org/10.1016/j.engstruct.2011.11.008
  23. Sheikh, A.H. and Mukhopadhyay, M. (2000), "Geometric nonlinear analysis of stiffened plates by the spline finite strip method", Comput. Struct., 76(6), 765-785. https://doi.org/10.1016/S0045-7949(99)00191-1
  24. Timoshenko, S.P. and Goodier, J.M. (1951), Theory of Elasticity, McGraw-Hill, Kogakusha.
  25. Turvey, G.J. (1983), "Axisymmetric elastic large deflection behaviour of stiffened composite plates", Compos. Struct. 2, 72-88.
  26. Wood, R.D. and Schrefler, B. (1978), "Geometrically nonlinear analysis-a correlation of finite element methods", Int. J. Numer. Methods Eng., 12(4), 635-642. https://doi.org/10.1002/nme.1620120408
  27. Zhang, Y.X. and Kim, K.S. (2006), "Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate elements", Compos. Struct., 72(3), 301-310. https://doi.org/10.1016/j.compstruct.2005.01.001
  28. Zienkiewicz, O.C. (1977), The Finite Element Method, Tata Mc-Graw Hill Publishing Company Ltd., New Delhi, India.

Cited by

  1. Experimental study on compressive behavior of GFRP stiffened panels using digital image correlation vol.114, 2016, https://doi.org/10.1016/j.oceaneng.2016.01.034
  2. Examination of non-homogeneity and lamination scheme effects on deflections and stresses of laminated composite plates vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.603
  3. Post-buckling responses of a laminated composite beam vol.26, pp.6, 2014, https://doi.org/10.12989/scs.2018.26.6.733
  4. Geometrically nonlinear analysis of a laminated composite beam vol.66, pp.1, 2014, https://doi.org/10.12989/sem.2018.66.1.027
  5. Large deflection analysis of a fiber reinforced composite beam vol.27, pp.5, 2014, https://doi.org/10.12989/scs.2018.27.5.567
  6. Thermal post-buckling analysis of a laminated composite beam vol.67, pp.4, 2018, https://doi.org/10.12989/sem.2018.67.4.337
  7. Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods vol.29, pp.6, 2018, https://doi.org/10.12989/scs.2018.29.6.785
  8. Geometric Nonlinear Analysis of Composite Stiffened Panels Using Variational Asymptotic Method vol.58, pp.9, 2020, https://doi.org/10.2514/1.j058963
  9. A numerical study on nonlinear bending performance of transversely loaded composite singly curved stiffened surfaces vol.56, pp.7, 2014, https://doi.org/10.1177/0309324720977415
  10. A numerical study on nonlinear vibrations of laminated composite singly curved stiffened shells vol.278, pp.None, 2021, https://doi.org/10.1016/j.compstruct.2021.114718