References
- Abdel Raheem, S.E. and Hayashikawa, T. (2007), "Damping characteristics in soil-foundation- superstructure interaction model of cable-stayed bridges tower", J. Construct. Steel, Japanese Society of Steel Construct. - JSSC, 15, 261-268.
- Abdel Raheem, S.E. and Hayashikawa, T. (2008), "Vibration and Damping Characteristics of Cable-Stayed Bridges Tower", International Association for Bridge and Structural Engineering - IABSE Conference, Information and Communication Technology (ICT) for Bridges, Buildings and Construction Practice, Helsinki, Finland, June, Paper ID F15.
- Abdel Raheem, S.E. and Hayashikawa, T. (2013a), "Energy dissipation system for earthquake protection of cable-stayed bridge towers", Earthq. Struct., Int. J., 5(6), 657-678. https://doi.org/10.12989/eas.2013.5.6.657
- Abdel Raheem, S.E., and Hayashikawa, T. (2013b), "Soil-structure interaction modeling effects on seismic response of a cable-stayed bridge tower", Int. J. Adv. Struct. Eng., 5(8), 1-17. https://doi.org/10.1186/2008-6695-5-1
- Abdel Raheem, S.E., Hayashikawa, T. and Hashimoto, I. (2003), "Effects of soil-foundation-superstructure interaction on seismic response of cable-stayed bridges tower with spread footing foundation", J. Struct. Eng. - JSCE, 49A, 475-486, 2003.
- Abdel Raheem, S.E., Hayashikawa, T. and Dorka, U. (2009), "Seismic Performance of Cable-Stayed Bridge Towers: Nonlinear Dynamic Analysis, Structural Control and Seismic Design", VDM Verlag, ISBN: 978-3639202236.
- Adhikari, A. (2004), "Optimal complex modes and an index of damping non-proportionality", Mech. Syst. Signal Process., 18(1), 1-27. https://doi.org/10.1016/S0888-3270(03)00048-7
- Angeles, J. and Ostrovskaya, S. (2002), "The proportional damping matrix of arbitrarily damped linear mechanical systems", J. Appl. Mech., 69(5), 649-656. https://doi.org/10.1115/1.1483832
- Bert, C.W. (1973), "Material damping: an introductory review of mathematical models, measure and experimental techniques", J. Sound Vib., 29(2), 129 -153. https://doi.org/10.1016/S0022-460X(73)80131-2
- Bread, C.F. (1979), "Damping in structural joints", J. Shock Vib. Digest, 11(9), 35-41. https://doi.org/10.1177/058310247901100609
- Chang, S.-Y. (2013), "Nonlinear performance of classical damping", Earthq. Eng. Eng. Vib., 12(2), 279-296. https://doi.org/10.1007/s11803-013-0171-3
- Chopra, A.K. (1995), Dynamic of Structures - Theory and Application to Earthquake Engineering, Prentice-Hall, Englewood Cliffs, NJ, USA.
- Claret, A.M. and Venancio-Filho, F. (1991), "A modal superposition method pseudo-force method for dynamic analysis of structural systems with non-proportional damping", Earthq. Eng. Struct. Eng., 20(4), 303-315. https://doi.org/10.1002/eqe.4290200402
- Ding, N.H., Lin, L.X. and Chen, J.D. (2011), "Seismic response analysis of double chains suspension bridge considering non-classical damping", Adv. Mater. Res., 255-260, 826-830. https://doi.org/10.4028/www.scientific.net/AMR.255-260.826
- Du, Y., Li, H. and Spencer, Jr.B.F. (2002), "Effect of non-proportional damping on seismic isolation", J. Struct. Control, 9(3), 205-236. https://doi.org/10.1002/stc.13
- Falsone, G. and Muscolino, G. (2004), "New real-value modal combination rules for non-classically damped structures", Earthq. Eng. Struct. Eng., 33(12), 1187-12094. https://doi.org/10.1002/eqe.394
- Hayashikawa, T., Abdel Raheem, S.E. and Hashimoto I. (2004), "Nonlinear seismic response of soil-foundation-structure interaction model of cable-stayed bridges tower", Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August, Paper No. 3045.
- Huang, B.C., Leung, A.Y.T., Lam, K.M. and Cheung, Y.K. (1995), "Analytical determination of equivalent modal damping ratios of a composite tower in wind-induced vibrations", Comput. Struct., 59(2), 311-316.
- Japan Road Association (1996), Chapter 7-9: Reference for highway bridge design, Specification for highway bridges-part IV substructures.
- Japan Road Association (2002), Specification for highway bridges-Part V Seismic design, Maruzen, Tokyo, Japan.
- Johnson, C.D. and Kienhholz, D.A. (1982), "Finite element prediction of damping in structures", Am. Inst. Aeronaut. Astronaut. J., 20(9), 1284-1290. https://doi.org/10.2514/3.51190
- Kawashima, K., Unjoh, S. and Tunomoto, M. (1993), "Estimation of damping ratio of cable-stayed bridges for seismic design", J. Struct. Eng., 119(4), 1015-1031. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:4(1015)
- Khanlari, K. and Ghafory-Ashtiany, M. (2005), "New approaches for non-classically damped system Eigen analysis", Earthq. Eng. Struct. Eng., 34(9), 1073-1087. https://doi.org/10.1002/eqe.467
- Lee, S.-H., Min, K.-W., Hwang, J.-S. and Kim, J. (2004), "Evaluation of equivalent damping ratio of a structure with added dampers", Eng. Struct., 26(3), 335-346. https://doi.org/10.1016/j.engstruct.2003.09.014
- Papageorgiou, A.V. and Gantes, C.J. (2010), "Equivalent modal damping ratios for concrete/steel mixed structures", Comput. Struct., 88(19-20), 1124-1136. https://doi.org/10.1016/j.compstruc.2010.06.014
- Papageorgiou, A.V. and Gantes, C.J. (2011), "Equivalent uniform damping ratios for linear irregularly damped concrete/steel mixed structures", Soil Dyn. Earthq. Eng., 31(3), 418-430. https://doi.org/10.1016/j.soildyn.2010.09.010
- Park, D. and Hashash, Y.M.A. (2004), "Soil damping formulation in nonlinear time domain site response analysis", J. Earthq. Eng., 8(2), 249-274
- Petrini, L., Maggi, C., Priestley, M.J.N. and Calvi, G.M. (2008), "Experimental verification of viscous damping modelling for inelastic time history analyses", J. Earthq. Eng., 12(1), 125-145. https://doi.org/10.1080/13632460801925822
- Prater, G. and Singh, R. (1990), "Eigenproblem formulation, solution and interpretation for nonproportionally damped continuous beams", J. Sound Vib., 143(1), 125-142. https://doi.org/10.1016/0022-460X(90)90572-H
- Prells, U. and Friswell, M.I. (2000), "A measure of non-proportional damping", Mech. Syst. Signal Process., 14(2), 125-137. https://doi.org/10.1006/mssp.1999.1280
- Qin, Q. and Lou, L. (2000), "Effects of non proportional damping on the seismic responses of suspension bridges", Proceedings of the 12th World Conference of Earthquake Engineering, Auckland, New Zealand, January-February, Paper No. 0529.
- Qu, Z.-Q., Selvam, R.P. and Jung, Y. (2003), "Model condensation for non-classically damped systems-part ii: iterative schemes for dynamic condensation", Mech. Syst. Signal Process., 17(5), 1017-1032. DOI: 10.1006/mssp.2002.1527
- Raggett, J.D. (1975), "Estimation of damping of real structures", J. Struct. Div., ASCE, 101(9), 1823-1835.
- Veletsos, A.S. and Ventura, C.E. (1986), "Model analysis of non-classically damped linear systems", Earthq. Eng. Struct. Dyn., 14(2), 217-243. https://doi.org/10.1002/eqe.4290140205
- Villaverde, R. (2008), "A complex modal superposition method for the seismic analysis of structures with supplemental dampers", Proceedings of the 14th World Conference on Earthquake Engineering, 14WCEE, Beijing, China, October.
- Warburton, G.B. and Soni, S.R. (1977), "Errors in response calculations for non-classically damped structures", Earthq. Eng. Struct. Dyn., 5(4), 365-376. https://doi.org/10.1002/eqe.4290050404
- Xu, J., DeGrassi, G. and Chokshi, N. (2004a), "A NRC-BNL benchmark evaluation of seismic analysis methods for non-classically damped coupled systems", Nucl. Eng. Design, 228(1-3), 345-366. https://doi.org/10.1016/j.nucengdes.2003.06.019
- Xu, J., DeGrassi, G. and Chokshi, N. (2004b), "Insights Gleaned from NRC-BNL benchmark evaluation of seismic analysis methods for non-classically damped coupled systems", J. Press. Vessel Tech., 126(1), 75-84. https://doi.org/10.1115/1.1638388
Cited by
- Dynamic behavior of hybrid framed arch railway bridge under moving trains vol.15, pp.8, 2014, https://doi.org/10.1080/15732479.2019.1594314
- Aerodynamic performance evaluation of different cable-stayed bridges with composite decks vol.34, pp.5, 2014, https://doi.org/10.12989/scs.2020.34.5.699